This paper introduced an innovative approach to evaluate burrowing activities of earthworms in the subterranean layer of a lowland dipterocarp forest in Danum Valley, Sabah. The motivation behind this study stemmed from the absence of clear and practical methods of observing earthworms in their natural environment. This study proposed modifications to rhizotron-use, for observing earthworms instead of plant roots, using it as a tool for scientists to monitor and assess their activity underground both qualitatively and quantitatively. This paper includes photographic examples and observation advantages to using the 100 cm x 25 cm belowground terrarium. Although this method has certain limitations, it offers significant insights into their behavior, providing both observational and measurable data. The earthworm Perspex rhizotron holds a considerable promise in advancing annelid research, guiding forest management and could pave way for a more creative data collection in the future.
KEYWORDS:
Burrows; Danum Valley; Earthworm; Modified-rhizotron; Sabah
3A Composites. 2025. PERSPEX® Cast Acrylic sheet with limitless colour and texture options. (https://www.display.3acomposites.com/en/products/by-brand/perspex-r/). Last accessed on 7 June 2025.
Blakemore, R. 2013. The major Megadrile families of the world reviewed again on their taxonomic types (Annelida: Oligochaeta: Megadrilacea). Opuscula Zoologica Instituti Zoosystematici et Oecologici Universitatis Budapestinensis, 44(2), 107-127.
Blakemore, R. J. 2009. Cosmopolitan earthworms - A global and historical perspective. In: Shain, D. H (Ed.). Annelids as Model Systems in the Biological Sciences. New York: John Wiley & Sons Incorporated.
Bottinelli, N., Hedde, M., Jouquet, P. & Capowiez, Y. 2020. An explicit definition of earthworm ecological categories – Marcel Bouché’s Triangle Revisited. Geoderma, 372, 114361-114390.
Capowiez, Y., Bottinelli, N. & Jouquet, P. 2014. Quantitative estimates of burrow construction and destruction, by anecic and endogeic earthworms in repacked soil cores. Applied Soil Ecology, 74, 46-50.
Capowiez, Y., Bottinelli, N., Sammartino, S., Michel, E. & Jouquet, P. 2015. Morphological and functional characterisation of the burrow systems of six earthworm species (Lumbricidae). Biology and Fertility of Soils, 51, 869–877.
Capowiez, Y., Sammartino, S., Keller, T. & Bottinelli, N. 2021. Decreased burrowing activity of endogeic earthworms and effects on water infiltration in response to an increase in soil bulk density. Pedobiologia, 85–86, 150728-150755.
Capowiez, Y., Marchán, D., Decaëns, T., Hedde, M. & Bottinelli, N. 2024. Let earthworms be functional - definition of new functional groups based on their bioturbation behavior. Soil Biology and Biochemistry, 188, 109-209.
Carpenter, A., Cherrett, J.M., Ford, J.B., Thomas, M. & Evans, E. 1985. An inexpensive rhizotron for research on soil and litter-living organisms. In: M. B. Fitter, A.H., Atkinson, D., Read, D.J., Usher (Eds.). Ecological interactions in soil: Plants, microbes and animals. Oxford: Blackwell Scientific Publication.
Edwards, C. A. 2004. Earthworm Ecology (2nd Edition). Boca Raton: CRC Press.
Ehrhardt, A., Berger, K., Filipović, V., Wöhling, T., Vogel, H. J. & Gerke, H. H. 2022. Tracing lateral subsurface flow in layered soils by undisturbed monolith sampling, targeted laboratory experiments, and model-based analysis. Vadose Zone Journal, 21(4), 1–16.
Felten, D., & Emmerling, C. 2009. Earthworm burrowing behaviour in 2D terraria with single- and multi-species assemblages. Biology and Fertility of Soils, 45, 789–797.
Green, J. J. 1992. Fine Root Dynamics in a Bornean Rain Forest. PhD Thesis, University of Stirling, United Kingdom.
Gould, E., Andau, M. & Easton, E. G. 1987. Observations of earthworms in Sepilok forest, Sabah, Malaysia. Biotropica, 19(4), 370-372.
Hendrix, P. F. & Bohlen, P. J. 2002. Exotic earthworm invasions in North America: ecological and policy implications. BioScience, 52(9), 801-811.
Johnson, S., Bose, A., Snaddon, J. L. & Moss, B. 2012. The role of earthworms in nitrogen and solute retention in a tropical forest in Sabah, Malaysia: A pilot study. Journal of Tropical Ecology, 28(6), 611-614.
Lee, K. 1985. Earthworms: Their Ecology and Relationship with Soils and Land Use. Samford Valley: Academic Press Australia.
Ma, L., Shao, M., Fan, J., Wang, J. & Li, Y. 2021. Effects of earthworm (Metaphire guillelmi) density on soil macropore and soil water content in typical anthrosol soil. Agriculture, Ecosystems and Environment, 311, 1-6.
Mazur-Paczka, A., Paczka, G., Kostecka, J., Podolak, A. & Garczynska, M. 2020. Effectiveness of Lumbricidae extracting with an environmentally friendly method. Journal Of Ecological Engineering, 21(5), 114–119.
Pérès, G., Bellido, A., Curmi, P., Marmonier, P. & Cluzeau, D. 2010. Relationships between earthworm communities and burrow numbers under different land use systems. Pedobiologia, 54(1), 37–44.
Rao, S. V. 2013. Different land use effect on earthworms at SAFE Project Site in Sabah, Borneo. MSc Thesis, Nottingham Trent University, United Kingdom.
Richard, B., Legras, M., Margerie, P., Mathieu, J., Barot, S., Caro, G., Desjardins, T., Dubs, F., Dupont, L., & Decaëns, T. 2012. Spatial organization of earthworm assemblages in pastures of northwestern France. European Journal of Soil Biology, 53, 62–69.
Rogers, W.S. 1939. Root Studies, VIII: Apple root growth in relation to rootstock, soil, seasonal and climatic factors. Journal of Pomology and Horticultural Science, 17, 99-129.
Schaik, L. Van, Palm, J., Klaus, J., Zehe, E. & Schröder, B. 2014. Linking spatial earthworm distribution to macropore numbers and hydrological effectiveness. Ecohydrology, 7, 401-408.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. 2012. Fiji: An open-source platform for biological- image analysis. Nature Methods, 9(7), 676–682.
Weiler, M. & Naef, F. 2003 An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes, 17, 477-493.
Yadav, S., Lone, A. R. & Thakur, S. S. 2022. Earthworms: A Contrivance to Ameliorate Water Infiltration Rates and Water Holding Capacity in Agroecosystem. In: Vig, A. P., Singh, J., Suthar, S. S. (Eds.). Earthworm Engineering and Applications. New York: Nova Science Publishers.
Yahya, N.A. 2025. The role of earthworms on soil erosion and hydrological processes in Danum Valley Conservation Area, Lahad Datu, Sabah. PhD Thesis, Universiti Malaysia Sabah, Malaysia.