Assessment of Haemoglobin Genotype Variants in Malaria Infected Patients of Two Government Hospitals in Plateau State, North Central Nigeria

Njila Livinus Hasley; Grace S. Onyike; Akwashiki Ombugadu.

Transactions on Science and Technology, 9(1), 1 - 13.

Back to main issue

ABSTRACT
Genetic factors play a key role in determining resistance and susceptibility to malaria infection. Therefore, a study to assess haemoglobin genotype variants in malaria infected patients of the General Outdoor Patients Departments (GOPD) of Jos University Teaching Hospital and Plateau State Specialist Hospital, Jos, Plateau State was carried out. Thick and thin film were used for the diagnosis of malaria infection. The genotypes were determined by Standard Operating Procedure for electrophoreses. 745 samples were examined from both hospitals, 246 (33.0%) were diagnosed positive while 499 (67.0%) were negative. There was a significant difference in malaria infection in relation to genotypes. HbAA genotype were the most infected with malaria parasites followed by HbAS genotype and the least was HbSS genotype. There was no significant difference in malaria infection in relation to gender. Females were more infected with malaria parasites compared to males. Malaria infection in relation to age groups and genotypes showed a significant difference. Age group 16 to 20 and ≥46 had the highest infection rate. There was a significant difference in trophozoite stage in relation to genotypes. Out of 246 infected patients, 244 (99.2%) were diagnosed at the trophozoite stage, while 2 (0.81%) with the gametocyte stage. There was a significant difference in malaria infection in relation to Plasmodium species. 245 (99.56%) were infected with Plasmodium falciparum while 1 (0.41%) were infected with P. malariae. There was a significant difference in P. falciparum infection in relation to genotypes. P. falciparum infected more HbAA compared to HbAS and HbSS. This study shows that all haemoglobin genotype variants were susceptible to malaria infection. Therefore, there is a need for government to use media to broadcast the importance of haemoglobin genotype test for each and every individual and make it free for effective treatment of malaria infection.

KEYWORDS: Haemoglobin; Genotype; Malaria; Anopheles mosquito; Patients.



Download this PDF file

REFERENCES
  1. Akanbi, O. M., Badaki, J. A., Adeniran, O. Y. & Olotu, O. O. 2010. Effect of blood group and demographic characteristics on malaria infection, oxidative stress and heamoglobin Levels in South Western Nigeria. African Journal of Microbiology Research, 4(9), 877-880.
  2. Bougouma, E.C., Tiono, A.B., Ouédraogo, A, Soulama, I., Diarra, A., Yaro, J.B., Ouédraogo, E., Sanon, S., Konaté, A.T., Nébié, I., Watson, N.L., Sanza, M., Dube, T.J.T. & Sirima S.B. 2012. Haemoglobin variants and Plasmodium falciparum malaria in children under five years of age living in a high and seasonal malaria transmission area of Burkina Faso. Malaria Journal, 11, 154-159.
  3. Bousema, T. & Drakeley, C. 2011. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clinical Microbiology Review, 24, 377–410.
  4. Brooks, G. F., Butel, J. S. & Morse, S. A. 2004. Medical Parasitology (23rd edition). Boston: The McGraw-Hill Company, Inc. 818 pp
  5. Charchuk, R., Houston, S. & Hawkes, M. T. 2015. Elevated prevalence of malnutrition and malaria among school-aged children and adolescents in war-ravaged South Sudan. Pathogens and Global Health, 109(8), 395–400.
  6. Chinawa, J. M., Manyike, P. C., Aronu, A. E., Obu, H. A. & Chinawa, A. T. 2015. Sickle cell anaemia: Errors in haemoglobin genotyping: Impact on parents of children attending two hospitals in South East Nigeria. Open Journal of Pediatrics, 5(1), 7-11.
  7. Cochran, W. G. 1963. Sampling Techniques (2nd edition). New York: John Wiley and Sons, Inc.
  8. Coker H. A. B, Chukwuani, C. M., Ifudu, N. O. & Aina, B. A. 2001. The malaria scourge concept in disease management. Journal of Pharmacy, 32, 19-49.
  9. Dawaki, S., Al Mekhlafi, H. M., Ithoi, I, Ibrahim, J., Atroosh, W. M., Abdulsalam, A. M., Sady, H., Elyana, F. N., Adamu, A. U., Yelwa, S. I., Ahmed, A., Al Areeqi, M. A., Subramaniam, L. R., Nasr, N. A. & Lau, Y. 2016. Is Nigeria winning the battle against malaria? Prevalence, risk factors and KAP assessment among Hausa communities in Kano State. Malaria Journal, 15, 351.
  10. Eksi, S., Morahan, B. J., Haile, Y., Furuya, T., Jiang, H., Ali, O., Xu, H., Kiattibutr, K., Suri, A., Czesny, B., Adeyemo, A., Myers, T. G., Sattabongkot, J., Su, X. Z. & Williamson, K. C. 2012. Plasmodium falciparum Gametocyte Development 1 (Pfgdv1) and Gametocytogenesis Early Gene Identification and Commitment to Sexual Development. PLoS Pathogens, 8(10), e1002964.
  11. Fadel, H. 2014. Plasmodium falciparum. Pathology Outlines.com website. http://www.pathologyoutlines.com/topic/parasitologymalariapfalciparum.html. Last accessed on 9 March, 2022.
  12. Schwartz, E., Sadetzki, S., Murad, H. & Raveh, D. 2001. Age as a risk factor for severe Plasmodium falciparum malaria in nonimmune patients. Clinical Infectious Diseases, 33(10), 1774-7.
  13. Liumbruno, G., Bennardello, F., Lattanzio, A., Piccoli, P. & Rossetti, G. 2009. Recommendations for the transfusion of red blood cells. Blood Transfusion 7(1), 49–64.
  14. LaMonte, G., Philip, N., Reardon, J., Lacsina, J. R., Majoros, W., Chapman, L., Thornburg, C. D., Telen, M. J., Ohler, U., Nicchitta, C. V., Haystead, T., & Chi, J. T. 2012. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host and Microbe, 12(2), 187–199.
  15. Howes, R. E., Reiner, Jr. R. C., Battle, K. E., Longbottom, J., Mappin, B., Ordanovich, D., Andrew, J. T., Chris, D., Peter, W. G., Peter, A. Z., David, L. S. & Simon, I. H. 2015. Plasmodium vivax Transmission in Africa. PLoS Neglected Tropical Diseases, 9(11), 2-22.
  16. Lalloo, D. G., Olukoya, P. & Olliaro, P. 2016. Malaria in adolescence: burden of disease, consequences, and opportunities for intervention. International Journal of Malaria Research, 6(12), 780-93.
  17. Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. 2002. The pathogenic basis of malaria. Nature, 415(7), 673-679.
  18. Institute of Medicine (US) Committee on the Economics of Antimalarial Drugs. 2004. Saving Lives, Buying Time: Economics of Malaria Drugs in an Age of Resistance. Washington (DC): National Academies Press (US).
  19. Nebe, O., Adeoye, G.O. & Agomo, P. 2002. Prevalence and clinical profile of malaria among the coastal dwellers of Lagos state, Nigeria. Nigerian Journal of Parasitology, 23, 61-68.
  20. Nwokolo, B. O. 2017. Prevalence of Malaria Parasitaemia in relation to Blood groups among Febrile Patients who Sought Medical Attention at the 347 Nigeria Air Force Hospital Jos. B.Sc. Thesis, University of Jos.
  21. Opara, K. N., Atting, I. A., Ukpong, I. G., Nwabueze, A. A. & Inokon, I. I. 2006. Susceptibility of Genetic Indices to Falciparum Malaria in Infants and Young Children in Southern Nigeria. Pakistan Journal of Biological Sciences, 9, 452-456.
  22. Patel, P., Bharti, P. K., Bansal, D., Raman, R. K., Mohapatra, P. K., Sehgal, R., Mahanta, J., Sultan, A. A. & Singh, N. 2017. Genetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: Implication for vaccine development. PLoS ONE, 12(8), 18-26.
  23. Rasheed, A., Saeed, S. & Khan, S. A. 2014. Clinical and laboratory findings in acute malaria caused by various Plasmodium species. The Journal of the Pakistan Medical Association, 59(4), 220-223.
  24. Mangal, P., Mittal, S., Kachhawa, K., Agrawal, D., Rath, B., & Kumar, S. 2017. Analysis of the Clinical Profile in Patients with Plasmodium falciparum Malaria and Its Association with Parasite Density. Journal of Global Infectious Diseases, 9(2), 60–65.
  25. Diakité, S. A. S., Ndour, P. A., Brousse, V., Gay, F., Roussel C., Biligui, S., Dussiot, M., Prendki, V., Lopera-Mesa, T. M., Traore, K., Konate, D., Doumbia, S., Cros, J., Dokmak, S., Fairhurst, R. M., Diakite, M. & Buffet, P. A. 2016. Stage-dependent fate of Plasmodium falciparum-infected red blood cells in the spleen and sickle-cell trait-related protection against malaria. Malaria Journal, 15, 482.
  26. Sule, H. A., Idachaba, S. O. & Idoko, T. (2014). Susceptibility of Humans of The ABO Blood Groups to P. falciparum infection Among Patients Attending Ahmadu Bello University Clinic (Sickbay), Samaru-Zaria, Kaduna State, Nigeria. Scholars Journal of Applied Medical Sciences, 2(4C), 1305-1309.
  27. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y. & Hay, S. I. 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 434(7030), 214–217.
  28. Tidi, S. K., Amos, J. T. & Firyanda, E. 2013. Association between Plasmodium infection, Hemoglobin genotypes and Blood groups among under-five nomadic Fulani of Northeastern Nigeria. International Journal of Malaria Research and Reviews, 1(2), 7-11.
  29. Thomas, N. W. 2011. How Do Hemoglobins S and C Result in Malaria Protection? The Journal of Infectious Diseases, 204(11), 1651–1653.
  30. Tiffert, T., Lew, V. L., Ginsburg, H., Krugliak, M., Croisille, L. & Mohandas, N. 2005. The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium falciparum. Blood, 105(12), 4853–4860.
  31. WHO. 2013. The world malaria report. Geneva. Available from http://www.who.int/malaria/publications/world_malaria_report. Last accessed on 9 March, 2022.
  32. WHO. 2014. Severe Malaria. World Health Organization Epidemiological Report, 19, 7 - 131.
  33. Williams, T. N., Mwangi, T. W., Wambua, S., Alexander, N. D., Kortok, M., Snow, R. W., & Marsh, K. 2005. Sickle cell trait and the risk of Plasmodium falciparum malaria and other childhood diseases. The Journal of Infectious Diseases, 192(1), 178–186.