Heating and Cooling Mechanisms for SMA Actuator - A Brief Review

Ferlorna Freddie John Luji; Kenneth TzeKin Teo; SooFun Tan; HouPin Yoong.

Transactions on Science and Technology, 8(3-3), 425 - 431.

Back to main issue

Shape memory alloy (SMA) is a type of alloy with significant thermo-mechanical behavior that can be utilized as a solid-state actuator. However, the particularly useful thermo-mechanical behavior also highly non-linear and hysteretic. Making control of the SMA thermomechanical behavior exceedingly difficult. A highly controllable heating and cooling mechanism is the key factor to achieve good control of the SMA thermomechanical behavior. Thus, this paper reviewed the heating and cooling mechanism for the SMA intending to find a controllable heating and cooling mechanism for the SMA. A result from the review suggests that a mechanism with a combination of the thermoelectric module (TEM), a two-way mixing valve, and flexible tubing can offer temperature controllability for the SMA. This can be achieved by using the Peltier effect of the TEM to generate hot and cool liquid that can be channeled to the SMA in a tube through a two-way mixing valve to control the liquid temperature. Although this mechanism had been developed by the researcher, the optimization of the flexible tubing encasing the SMA to achieve maximum performance is still left poorly explore.

KEYWORDS: Shape memory alloy (SMA); Peltier effect; Resistive heating; Thermoelectric module (TEM); Artificial muscle

Download this PDF file

  1. Buehler, W. J. & Wiley, R. C. 1965. Nickel-Base Alloys. US Patent No. 3,174,851.
  2. Cho, K.-J. & Asada, H. H. 2006. Architecture design of a multiaxis cellular actuator array using segmented binary control of shape memory alloy. IEEE Transactions on Robotics, 22(4), 831-843.
  3. Guo, Z., Pan, Y., Wee, L. B. & Yu, H. 2015. Design and control of a novel compliant differential shape memory alloy actuator. Sensors and Actuators A: Physical, 225, 71-80.
  4. Hasan, N., Kim, H. & Mastrangelo, C. H. 2016. Large aperture tunable-focus liquid lens using shape memory alloy spring. Optics Express, 24(12), 13334-13342.
  5. Hashemi, M. Y., Kadkhodaei, M. & Salehan, M. 2019. Fully coupled thermomechanical modeling of shape memory alloys under multiaxial loadings and implementation by finite element method. Continuum Mechanics and Thermodynamics, 31(6), 1683-1698.
  6. Hegana, A. B., Hariharan, S. & Engeberg, E. D. 2015. Electromechanical conversion of low-temperature waste heat via helical shape memory alloy actuators. IEEE/ASME Transactions on Mechatronics, 21(3), 1434-1444.
  7. Ikuta, K., Tsukamoto, M. & Hirose, S. 1991. Mathematical Model and Experimental Verification of Shape Memory Alloy for Designing Micro Actuator. [1991] Proceedings. IEEE Micro Electro Mechanical Systems. 30-2 January. 1991, Nara, Japan. pp. 103-108.
  8. Ishikawa, T. & Nakada, T. 2010. Shape Memory Alloy actuator for artificial muscle. Journal of Environment and Engineering, 5(1), 105-113.
  9. Jani, J. M., Leary, M., Subic, A. & Gibson, M. A. 2014. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56, 1078-1113.
  10. Kim, Y., Taesoo, J., Hema, G., A, M. N., Bongjo, R. & Buhyun, S. 2019. Bidirectional rotating actuators using shape memory alloy wires. Sensors and Actuators A: Physical, 295, 512-522.
  11. Knick, C. R., Smith, G. L., Morris, C. J. & Bruck, H. 2019. Rapid and low power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal bimorph actuators. Sensors and Actuators A: Physical, 291, 48-57.
  12. Lara-Quintanilla, A. & Bersee, H. 2015. Active cooling and strain-ratios to increase the actuation frequency of SMA wires. Shape Memory and Superelasticity, 1(4), 460-467.
  13. Lee, H.-T., Min-Soo, K., Gil-Yong, L., Chung-Soo, K. & Sung-Hoon, A. 2018. Shape memory alloy (sma)-based microscale actuators with 60% deformation rate and 1.6 kHz actuation speed. Small, 14(23), 1801023.
  14. Lee, J.-H. Chung, Y. S. & Rodrigue, H. 2019. Long shape memory alloy tendon-based soft robotic actuators and implementation as a soft gripper. Scientific Reports, 9(1), 1-12.
  15. Maffiodo, D. & Raparelli, T. 2017. Design and realization of a flexible finger actuated by shape memory alloy (SMA) wires. International Journal of Applied Engineering Research, 12(24), 15635-15643.
  16. Mascaro, S. A. & Asada, H. H. 2003. Wet Shape Memory Alloy Actuators for Active Vasculated Robotic Flesh. 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422). 14-19 September, 2003. Taipei, Taiwan. pp 282-287.
  17. Miyazaki, S. & Otsuka, K. 1989. Development of shape memory alloys. Isij International, 29(5), 353-377.
  18. Park, C. H. & Son, Y. S. 2017. Evaluation of Artificial Muscle using Sma Spring Bundle with High\Load Capacity and Power Density. 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). 28 June-1 July, 2017. Jeju, South Korea. pp 81-82.
  19. Park, C. H., Choi, K. J. & Son, Y. S. 2019. Shape memory alloy-based spring bundle actuator controlled by water temperature. IEEE/ASME Transactions on Mechatronics, 24(4), 1798-1807.
  20. Peng, C., Yin, Y. H., Hong, H. B., Zhang, J. J. & Cheng, X. 2017. Bio-inspired design methodology of sensor-actuator-structure integrated system for artificial muscle using SMA. Procedia CIRP, 65, 299-303.
  21. Rodrigue, H., Wang, W., Dong-Ryul, K. & Sung-Hoon, A. 2017. Curved shape memory alloy-based soft actuators and application to soft gripper. Composite Structures, 176, 398-406.
  22. Russell, R. A. & Gorbet, R. B. 1995. Improving the Response of SMA Actuators. Proceedings of 1995 IEEE International Conference on Robotics and Automation. 21-27 May 1995. Nagoya, Japan. pp 2299-2304.
  23. Song, G., Chaudhry, V. & Batur, C. 2003. Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller. Smart Materials and Structures, 12(2), 223.
  24. Song, S.-H., Lee, J.-Y., Rodrigue, H., Choi, I.-S., Kang, Y. J. & Ahn, S.-H. 2016. 35 Hz shape memory alloy actuator with bending-twisting mode. Scientific Reports, 6(1), 1-13.
  25. Taniguchi, H. 2013. flexible artificial muscle actuator using coiled shape memory alloy wires. APCBEE Procedia, 7, 54-59.
  26. Taylor, F. & Au, C. 2016. Forced air cooling of shape-memory alloy actuators for a prosthetic hand. Journal of Computing and Information Science in Engineering, 16(4), 041004.
  27. Villoslada, A., Flores, A., Copaci, D., Blanco, D. & Moreno, L. 2015. High-displacement flexible shape memory alloy actuator for soft wearable robots. Robotics and Autonomous Systems, 73, 91-101.
  28. Williams, E. A., Shaw, G. & Elahinia, M. 2010. Control of an automotive shape memory alloy mirror actuator. Mechatronics, 20(5), 527-534.
  29. Yoong, H.-P. 2018. Design, Fabrication, Modeling and Control of Artificial Muscle Actuated Wrist Joint System. Ph.D Thesis, Concordia University, Montreal.
  30. Zhang, J., Yin, Y. & Zhu, J. (2013). Sigmoid-based hysteresis modeling and high-speed tracking control of SMA-artificial muscle. Sensors and Actuators A: Physical, 201, 264-273.
  31. Zhang, L.-x., Hu, G.-x. & Wang, Z.-g. 2008. Study on liquid-jet cooling and heating of the moving SMA actuator. International Journal of Thermal Science, 47(3), 306-314.