Hybrid nanofluids for automotive cooling

Mohd Suffian Misaran; Nazrein Adrian Amaludin; Hazlizan Haris; Sariah Saalah; Suryani Saallah; Mohd Kamal Kamarulzaman.

Transactions on Science and Technology, 12(3-2), Article ID UMS-ReS3RA2, pp 1 - 12.

Back to main issue

ABSTRACT
Hybrid nanofluids (HNFs) consisting of multiple types of nanoparticles in base fluids, provide better thermal conductivity, stability, and rheological characteristics for automotive cooling systems. The current review is centered on the recent progress in the formulation of HNF which are oxide-carbon hybrids and bio-derived stabilizers like cellulose nanocrystals (CNCs). Besides, the main thermophysical parameters (thermal conductivity, viscosity, specific heat, and density) are studied in the context of particle morphology, concentration, and dispersion techniques. Ethylene glycol-water blends are still the most widely used base fluid because they provide a good combination of freeze protection and compatibility with materials. However, their low thermal conductivity requires enhancement through nanoparticles. Ultra-low loading hybrids (≤0.1 wt%) developed through surfactant-free ultrasonication or covalent functionalization are promising for the enhancement of thermal conductivity by double digits while maintaining minimal increase in viscosity. CNC-TiO₂ hybrids are still the sustainable options that provide renewable stabilization and chemical resistance, but they have not been completely validated in the automobile radiator loops. The review has pointed out the major issues regarding the lack of synthesis standardization, electrochemical safety, and lifecycle assessment. The future research should focus on large scale extraction of CNC, ligand-assisted assembly of oxide, and integrated system testing under real duty cycles to make the service-ready, environmentally friendly HNF coolants.

KEYWORDS: Hybrid nanofluids; Automotive coolings; Cellulose nanocrystals; Thermal conductivity; Ethylene glycol.



Download this PDF file

REFERENCES
  1. Aktas, F., Elibol, E. A., Ulucak, O., Aksoy, A. E., Karabulut, N., Cakmak, E. & Turgut, O. 2025. Thermal performance evaluation of Al₂O₃–water nanofluids in automotive radiators using ANN and PINN approaches. Journal of Thermal Analysis and Calorimetry, 150, 18725–18743.
  2. Arora, N. & Gupta, M. 2021. Stability evaluation and enhancement methods in nanofluids: A review. AIP Conference Proceedings, 2341, 040022.
  3. Barai, R., Kumar, D. & Wankhade, A. 2023. Heat transfer performance of nanofluids in heat exchanger: A review. Journal of Thermal Engineering, 9(1), 86–106.
  4. Bargal, M. H. S., Allam, A. N., Zaki, A. M., Zayed, M. E., Alhems, L. M. & Ali, H. M. 2025. Thermohydraulic performance augmentation and heat transfer enhancement of automotive radiators using nano-coolants: A critical review. Journal of Thermal Analysis and Calorimetry, 150, 4927–4979.
  5. Bayou, S., El Moujahid, C., El Farissi, H., Roman, C., Ettalibi, O. & Chafik, T. 2025. Stability and thermophysical property enhancement of MoS₂-based water nanofluids using cationic CTAB and anionic SLS surfactants. ChemEngineering, 9(6), 123.
  6. Cardoso, B. D., Souza, A., Nobrega, G., Afonso, I. S., Neves, L. B., Faria, C., Ribeiro, J. & Lima, R. A. 2025. Progress in nanofluid technology: From conventional to green nanofluids for biomedical, heat transfer and machining applications. Nanomaterials, 15(16),1242.
  7. Cuce, P. M., Guclu, T. & Cuce, E. 2025. Life cycle cost and carbon footprint analysis of CuO–Al₂O₃/water hybrid nanofluids in thermoelectric vaccine refrigerators. Journal of Thermal Analysis and Calorimetry, 150, 10595–10608.
  8. Di Battista, D., Di Bartolomeo, M., & Fatigati, F. 2023. Editorial: New developments in vehicle thermal management. Frontiers in Mechanical Engineering, 9, 1255446.
  9. Elcioglu, E. B. 2025. Thermal conductance of nanofluids and effective mechanisms: A review. Current Research in Thermal Conductivity. IntechOpen.
  10. Flores Contreras, E. A., González González, R. B., Pizaña Aranda, J. J. P., Parra Arroyo, L., Rodríguez Aguayo, A. A., Iñiguez Moreno, M., Gonzalex-Meza, G. M., Araujo, R. G., Ramirez-Gamboa, D., Parra-Saldivar, R. & Melchor Martínez, E. M. 2024. Agricultural waste as a sustainable source for nanoparticle synthesis and their antimicrobial properties for food preservation. Frontiers in Nanotechnology, 6, 1346069.
  11. García-Betancourt, M. L. & Osorio-Aguilar, D. M. 2022. Physicochemical characterization of nanocellulose. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham.
  12. Hasan, M. M., Rahman, M. M., Bakar, S. A., Kabir, M. N., Ramasamy, D. & Sadi, A. S. 2025. Performance evaluation of various training functions using ann to predict the thermal conductivity of eg/water-based gnp/cnc hybrid nanofluid for heat transfer application. Journal of Thermal Analysis and Calorimetry, 150(3), 1907-1932.
  13. Heshmatian, S., Aligholami, M., Shafiei, S., Madiba, I. G., Azizi, S., Hussein, A. A. & Maaza, M. 2025. Size effect on thermal conductivity and stability of TiO₂/MWCNT-based hybrid nanofluids synthesized via probe ultrasonication. RSC Advances, 15, 44439-44450.
  14. Hossam, Y. & Fahim, I. S. 2023. Towards a circular economy: Biodegradable plates from sugarcane waste. Frontiers in Sustainable Food Systems, 7, 1220324.
  15. Islam, M. R., Shabani, B. & Rosengarten, G. 2017. Electrical and thermal conductivities of 50/50 water–ethylene glycol based TiO₂ nanofluids to be used as coolants in PEM fuel cells. Energy Procedia, 110, 101–108.
  16. Kamelnia, E., Kamelnia, R. & Darroudi, M. 2024. Green synthesis of cellulose nanocrystals from bio-renewable resources and their potential biological applications: A critical review. Journal of the Australian Ceramic Society, 61(1), 77-99
  17. Keklikcioglu Cakmak, N. 2020. The impact of surfactants on the stability and thermal conductivity of graphene oxide deionized water nanofluids. Journal of Thermal Analysis and Calorimetry, 139, 1895–1902.
  18. Lakshminarayanan, P. A. & Agarwal, A. K. 2022. Handbook of Thermal Management of Engines. Springer.
  19. Mane, N. S. & Hemadri, V. 2022. Experimental investigation of stability, properties and thermorheological behaviour of water-based hybrid CuO and Fe₃O₄ nanofluids. International Journal of Thermophysics, 43, 7.
  20. Manimaran, M., Norizan, M. N., Kassim, M. H. M., Adam, M. R., Abdullah, N. & Norrrahim, M. N. F. 2025. Critical review on the stability and thermal conductivity of water-based hybrid nanofluids for heat transfer applications. RSC Advances, 15, 14088–14125.
  21. Mateo, S., Peinado, S., Morillas-Gutiérrez, F., La Rubia, M. D. & Moya, A. J. 2021. Nanocellulose from agricultural wastes: Products and applications—A review. Processes, 9, 1594.
  22. Mishra, S., Prabhakar, B., Kharkar, P. S., & Pethe, A. M. 2023. Valorization of banana peel waste for the extraction of nanocrystalline cellulose. ACS Omega, 8, 1140–1145.
  23. Mohd Jamil, N. A., Jaffar, S. S., Saallah, S., Misson, M., Siddiquee, S., Roslan, J. & Lenggoro, W. 2022. One-pot microwave and mild oxidative hydrolysis of banana peels to produce cellulose nanocrystals. Nanomaterials, 12, 3537.
  24. Mutuku, W. N. 2016. Ethylene glycol (EG)-based nanofluids as a coolant for automotive radiator. Asia Pacific Journal on Computational Engineering, 3, 1.
  25. Ozerinc, S., Kakac, S. & Yazicioglu, A. G. 2010. Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluidics and Nanofluidics, 8, 145–170.
  26. Purushothaman, R., Alamelu, R., Selvabaskar, S. & Sudha, M. 2025. Theories, techniques and strategies of sustainable circular economy. Discover Sustainability, 6, 297.
  27. Râpă, M., Darie-Niță, R. N. & Coman, G. 2024. Valorization of fruit and vegetable waste into sustainable materials. Waste, 2(3), 258–278.
  28. Rahman, M. A., Hasnain, S. M. M., Pandey, S., Tapalova, A., Akylbekov, N. & Zairov, R. 2024. Review on nanofluids: Preparation, properties, stability, and thermal performance augmentation in heat transfer applications. ACS Omega, 9, 32328–32349.
  29. Razzaq, I., Xinhua, W., Rasool, G., Sun, T., Shflot, A. S., Malik, M. Y., Abbas, K., Ali, S. & Ali, A. 2025. Nanofluids for advanced applications: A comprehensive review on preparation methods, properties, and environmental impact. ACS Omega, 10, 5251–5282.
  30. Sajid, M. U. and Biçer, Y. 2022. Impacts of ultrasonication time and surfactants on stability and optical properties of cuo, fe3o4, and cnts/water nanofluids for spectrum selective applications. Ultrasonics Sonochemistry, 88, 106079.
  31. Sanduru, B., Vadapalli, S., Satyanarayana, K., Nemova, D. V. & Joshi, A. 2024. Comparison of stability and thermophysical properties of CNT–GNP hybrid nanofluids using different surface modification techniques. Cogent Engineering, 11(1), 2325028.
  32. Scott, T. O., Ewim, D. R. E. & Eloka-Eboka, A. C. 2022. Hybrid nanofluids flow and heat transfer in cavities: A technological review. International Journal of Low-Carbon Technologies, 17, 1104–1123.
  33. Suneetha, S., Subbarayudu, K. & Bala Anki Reddy, P. 2022. Hybrid nanofluids development and benefits: A comprehensive review. Journal of Thermal Engineering, 8(3), 445–455.
  34. Tang, S., Chen, Z., Chen, F., Lai, X., Wei, Q., Chen, X. & Jiang, C. 2023. Extraction and surface functionalization of cellulose nanocrystals from sugarcane bagasse. Molecules, 28(14), 5444.
  35. Teixeira, N. 2025. Circular economy perspectives: Challenges, innovations, and sustainable futures. Discover Sustainability, 6, 738.
  36. Thongsomboon, W., Baimark, Y. & Srihanam, P. 2023. Valorization of cellulose-based materials from agricultural waste: Comparison between sugarcane bagasse and rice straw. Polymers, 15, 3190.
  37. Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N. & Hussin, M. H. 2020. Nanocellulose: From fundamentals to advanced applications. Frontiers in Chemistry, 8, 392.
  38. Tohamy, H. S., Koriem, A. & El-Nashar, D. E. 2025. Eco-friendly EPDM nanocomposites reinforced with sugarcane bagasse-derived cellulose nanocrystals. BMC chemistry, 19(1), 239.
  39. Wang, X., Chang, C. H., Jiang, J., Liu, Q., Liao, Y., Lu, J., Li, L., Liu, X., Kim, J., Ahmed, A. Nell, A. & Xia, T. (2019). The crystallinity and aspect ratio of cellulose nanomaterials determine their pro‐inflammatory and immune adjuvant effects in vitro and in vivo. Small, 15(42), e1901642.
  40. Zaini, H. M., Saallah, S., Roslan, J., Sulaiman, N. S. & Pindi, W. 2024. Isolation and characterization of nanocellulose from banana peels via a one-pot hydrolysis system using the Taguchi method. Food Biophysics, 19, 1017–1028.