The effects of intercropping of sweet corn and groundnut in immature durian orchard on the biological and economic yield indices

Nurin Maisarah Mappah; Borhan Abdul Haya; Muhamad Askari; Ilmas Abdurofi; Dk. Nor Hajijah Ak. Mohiddin; Azwan Awang; Nurul Mayzatul Azwa Jamaludin.

Transactions on Science and Technology, 12(2), Article ID ToST122OA2, pp 1 - 10.

Back to main issue

ABSTRACT
Sweet corn (Zea mays convar. saccharata var. rugosa) and groundnut (Arachis hypogaea L.) are important crops with significant nutritional and economic value. However, monoculture practices and land underutilization in immature durian (Durio zibethinus Murr.) orchards present challenges such as soil degradation and reduced productivity. This study evaluated the biological and economic yield indices of intercropping sweet corn and groundnut in immature durian orchards as a sustainable alternative. The research was conducted at the Faculty of Sustainable Agriculture (FSA), Universiti Malaysia Sabah, Sandakan campus, over five months, the experiment employed a randomized complete block design (RCBD) with four treatments: monoculture of sweet corn (T1), monoculture of groundnut (T2), and two intercropping systems with staggered planting times (T3 and T4). Parameters measured included Land Equivalent Ratio (LER), Area Time Equivalent Ratio (ATER), Aggressivity (A), Competitive Ratio (CR), Relative Crowding Coefficient (RCC), Actual Yield Loss (AYL), Monetary Advantage Index (MAI), and Gross Profits (GP). However, results showed that T3 and T4 intercropping systems outperformed monocultures, with T4 yielding the highest fresh weight, MAI, and GP. LER and ATER exceeded 1 in T3 and T4, demonstrating greater land-use efficiency. Sweet corn exhibited higher competitiveness (A and CR) in intercropping systems, while groundnut showed reduced yields under shading. The study concludes that intercropping sweet corn and groundnut in immature durian orchards optimizes land productivity, improves economic returns, and offers a sustainable solution for enhancing orchard management.

KEYWORDS: Intercropping; Sweet corn; Groundnut; Biological indices; Economic yield indices



Download this PDF file

REFERENCES
  1. Adjahossou, S. B., Adjahossou, F. D., Sinsin, B., Boko, M. & da Silva, J. V. 2008. Ecophysiological responses of peanut (Arachis hypogea) to shading due to maize (Zea mays) in intercropping systems. Cameroon Journal of Experimental Biology, 4(1), 29-38.
  2. Ahmed, O., Olayinka, B., Garuba, T., Ahmed, J. & Etejere, E. 2017. Germination of several groundnut cultivars in relation to incidence of fungi. Science World Journal, 12(1), 38–41.
  3. Baraker, B., Jha, S. K. & Wani, S. 2017. Effect of improved management practices on economics in groundnut (Arachis hypogaea L.) cultivation. International Journal of Chemical Studies, 302, 302–304.
  4. Baveja, A., Muthusamy, V., Panda, K., Zunjare, R., Das, A., Chhabra, R., Mishra, S., Mehta, B., Saha, S. & Hossain, F. 2021. Development of multinutrient-rich biofortified sweet corn hybrids through genomics-assisted selection of shrunken2, opaque2, lcyE and crtRB1 genes. Journal of Applied Genetics, 62, 419 - 429.
  5. Ghosh, P. 2004. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Research, 88(2–3), 227–237.
  6. Hemon, A. F. & Hanafi, A. R. 2021. Shade stress in various growth phases of peanut genotypes and its effect on agronomic characters and chlorophyll content. IOP Conference Series: Earth and Environmental Science, 712(2021), 012017).
  7. Jabatan Pertanian. 2008. Pakej teknologi jagung manis. (https://tinyurl.com/y6udmya8). Last accessed on 13 June 2025.
  8. Jabatan Pertanian Malaysia, 2010. (http://www.doa.gov.my/). Last accessed on 13 June 2025.
  9. Jabatan Pertanian Malaysia. 2020. Pakej teknologi jagung bijirin. (https://tinyurl.com/ak6jhc2m). Last accessed on 13 June 2025.
  10. Kamanga, B. C. G., Waddington, S. R., Robertson, M. J. & Giller, K. E. 2010. Risk analysis of maize-legume crop combinations with smallholder farmers varying in resource endowment in central Malawi. Experimental agriculture, 46(1), 1-21.
  11. Karunarathna, B. & Maduwanthi, A. K. M. R. B. 2022. Competition indices used to evaluate the agronomic and monetary advantage in intercropping: A review. AGRIEAST: Journal of Agricultural Sciences, 16(1), 25 - 40.
  12. Li, C., Hoffland, E., Kuyper, T. W., Yu, Y., Li, H., Zhang, C., Zhang, F. & van der Werf, W. 2020. Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 113, 125987.
  13. Li, C., Stomph, T. J., Makowski, D., Li, H., Zhang, C., Zhang, F. & Van der Werf, W. 2023. The productive performance of intercropping. Proceedings of the National Academy of Sciences, 120(2), e2201886120.
  14. Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., Palai, J. B., Jena, J., Bhattacharya, U., Duvvada, S. K., Lalichetti, S. & Sairam, M. 2021. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy, 11(2), 343.
  15. Manasa, P., Maitra, S. & Barman, S. (2020). Yield attributes, yield, competitive ability and economics of summer maize-legume intercropping system. International Journal of Agriculture, Environment and Biotechnology, 13(1), 33-38.
  16. Mugi-Ngenga, E., Bastiaans, L., Anten, N. P. R., Zingore, S. & Giller, K. E. 2022. Immediate and residual-effects of sole and intercropped grain legumes in maize production systems under rain-fed conditions of Northern Tanzania. Field Crops Research, 287, 108656.
  17. Nambiar, P., Rao, M., Reddy, M., Floyd, C., Dart, P. & Willey, R. 1983. Effect of Intercropping on Nodulation and N2-fixation by Groundnut. Experimental Agriculture, 19, 79 - 86.
  18. Pan, S., Liu, H., Mo, Z., Patterson, B., Duan, M., Tian, H., Hu, S. & Tang, X. 2016. Effects of nitrogen and shading on root morphologies, nutrient accumulation, and photosynthetic parameters in different rice genotypes. Scientific Reports, 6(1), 32148.
  19. Ranum, P., Peña-Rosas, J. & Garcia-Casal, M. 2014. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312, 105–112.
  20. Rasool, Faisul-Ur-, M. I. Bhat, Z. A. Dar, B. A. Lone, Latief Ahmad, S. A. Hakeem, Z. Rashid, S. Naseer, S. Bashir, S. Majid, and S. Nissa. 2021. Legume-Maize Intercropping System: An Alternative Pathway for Sustainable Agriculture. International Journal of Plant & Soil Science, 33(16), 87-92.
  21. Rezapour Kavishahi, T., Sayfzadeh, S., Mostafavi Rad, M., Valadabady, A. R. & Hadidi Masouleh, E. 2023. Quantitative and Qualitative Yield of Groundnut (Arachis Hypogaea L.) in Response to Intercropping Pattern and Integrated Application of Chemical and Biological Phosphorus Fertilizers. Communications in Soil Science and Plant Analysis, 54(14), 1955-1968.
  22. Sahoo, U., Maitra, S., Dey, S., Vishnupriya, K. K., Sairam, M. & Sagar, L. 2023. Unveiling the potential of maize-legume intercropping system for agricultural sustainability: A review. Farming and Management, 8(1), 1-13.
  23. Shiyam, J. 2009. Growthand yield response of groundnut (Arachis hypogaea L.) to plant densities and phosphorus on an ultisol in southeastern Nigeria. Nigeria Agricultural Journal, 40(1-2).
  24. Singh, N. & Kumar, R. 2023. Legume Intercropping for Weed Control Efficiency in Kharif Maize (Zea mays L.) under Amritsar Conditions. Agricultural Science Digest, Article ID D-5656, [1-4.
  25. Stirling, C. M., Williams, J. H., Black, C. R. & Ong, C. K. 1990. The effect of timing of shade on development, dry matter production and light-use efficiency in groundnut (Arachis hypogaea L.) under field conditions. Australian Journal of Agricultural Research, 41(4), 633-644.
  26. Undie, U. L., Uwah, D. F. & Attoe, E. E. 2012. Effect of intercropping and crop arrangement on yield and productivity of late season maize/soybean mixtures in the humid environment of south southern Nigeria. Journal of Agricultural Science,4(4), 37-50.
  27. Wang, J., Yao, R., Sun, Z., Wang, M., Jiang, C., Zhao, X., Liu, X., Zhong, C., Zhang, H., Zhao, S., Wang, X. & Yu, H. 2024. Effects of shading on morphology, photosynthesis characteristics, and yield of different shade-tolerant peanut varieties at the flowering stage. Frontiers in Plant Science, 15, 1429800.
  28. Yahuza, I. 2011. Review of some methods of calculating intercrop efficiencies with particular reference to the estimates of intercrop benefits in wheat/faba bean system. International Journal of Biosciences, 1(5), 18-30.
  29. Ye, D., Chen, J., Yu, Z., Sun, Y., Gao, W., Wang, X., Zhang, R., Zaib-Un-Nisa, Su, D. & Atif Muneer, M. 2023. Optimal plant density improves sweet maize fresh ear yield without compromising grain carbohydrate concentration. Agronomy, 13(11), 2830.
  30. Yu, Y. 2016. Crop Yields in Intercropping: Meta-Analysis and Virtual Plant Modelling. PhD Thesis, Wageningen University and Research, Netherlands.
  31. Yu, Y., Stomph, T. J., Makowski, D., & van Der Werf, W. 2015. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crops Research, 184, 133-144.