Archives

Volume 7, Issue No 1, March 2020

<<Previous Volume II Next Volume>>

Issues in Volume 7
I No 1 (this issue) I

Cover Page and Table of Contents

Review Articles

Cloud-MANET and its Role in Software-Defined Networking
Tanweer Alam. 2020. Transactions on Science and Technology, 7(1), 1 - 7
Abstract The telecommunication networking technologies are changing day by day with the advancement of the existing technologies. In the proposed 5G networks, the role of Software-defined networking (SDN) is to provide programmable networking and decoupling the control and data plane. SDN comes from the requirement for providing the dynamic, high speed with low latency connectivity in real-time. This requirement introduces a new framework for creating programmable networking, decoupling forwarding and controlling planes, flexible real-time network, virtualizations in networking for managing the complexities in 5G heterogeneous networking. The emergence of virtualization has become the most useful technology for creating virtual machines remotely and apply security rules using programmable hardware to control centrally. In this article, the author discussed the cloud-based mobile ad hoc network (Cloud-MANET or sometimes called C-MANET) in the architecture of SDN for 5G heterogeneous networks. The main idea of creating the C-MANET mobility model in the SDN framework is to enable programmable networking and accessibility for the moving devices in the range of MANET and cloud connectivity. In the framework of SDN, the C-MANET mobility model implementation is not an easy task, but it can be a very useful contribution to add this model in the framework of SDN so that it provides the connection service in that location where internet or cellular networks are impossible or at the situation of a disaster.

REFERENCES
  1. Alam, T. & Aljohani, M. 2015a. An approach to secure communication in mobile ad-hoc networks of Android devices. Proocedings of the 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). 28-30 November 2015. Okinawa, Japan. pp. 371-375.
  2. Alam, T. & Aljohani, M. 2015b. Design and implementation of an Ad Hoc Network among Android smart devices. International Conference on Green Computing and Internet of Things (ICGCIoT). (pp. 1322-1327). IEEE. India.
  3. Alam, T. & Aljohani, M. 2016. Design a new middleware for communication in ad hoc network of android smart devices. Second International Conference on Information and Communication Technology for Competitive Strategies. (pp. 1-6). India.
  4. Alam, T. & Benaida, M. 2018a. The role of cloud-MANET framework in the internet of things (IoT). International Journal of Online Engineering, 14(12), 97-111.
  5. Alam, T. & Benaida, M. 2018b. CICS: Cloud–Internet Communication Security Framework for the Internet of Smart Devices. International Journal of Interactive Mobile Technologies, 12(6), 74-84.
  6. Alam, T. & Benaida, M. 2020. Blockchain, Fog and IoT Integrated Framework: Review, Architecture and Evaluation. Technology Reports of Kansai University. Vol 62 (02).
  7. Alam, T. & Rababah, B. 2019. Convergence of manet in communication among smart devices in IoT. International Journal of Wireless and Microwave Technologies (IJWMT), 9(2), 1-10.
  8. Alam, T. 2017. Middleware Implementation in Cloud-MANET Mobility Model for Internet of Smart Devices. International Journal of Computer Science and Network Security, 17(5), 86-94.
  9. Alam, T. 2018a. A Reliable Communication Framework and Its Use in Internet of Things (IoT). International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), 3(5), 450-456.
  10. Alam, T. 2018b. A reliable framework for communication in internet of smart devices using IEEE 802.15. 4. ARPN Journal of Engineering and Applied Sciences, 13(10), 3378-3387.
  11. Alam, T. 2019a. 5G-Enabled Tactile Internet for smart cities: vision, recent developments, and challenges. Jurnal Informatika, 13(2), 1-10.
  12. Alam, T. 2019b. Blockchain and its Role in the Internet of Things (IoT). International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 5(1), 151-157.
  13. Alam, T. 2019c. IoT-Fog: A communication framework using blockchain in the internet of things. International Journal of Recent Technology and Engineering (IJRTE), 7(6), 833 - 838.
  14. Alam, T. 2020. Internet of Things: A Secure Cloud-Based MANET Mobility Model. International Journal of Network Security, 22(3), 514 - 520.
  15. Aljohani, M. & Alam, T. 2015. An algorithm for accessing traffic database using wireless technologies. IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). (pp. 1-4). IEEE. India.
  16. Mendonca, M., Astuto, B.N., Obraczka, K. & Turletti, T. 2013. Software defined networking for heterogeneous networks. IEEE MMTC E-Letters, IEEE, 8 (3), 36-39.
  17. Truong, N.B., Lee, G.M. & Ghamri-Doudane, Y. 2015. May. Software defined networking-based vehicular adhoc network with fog computing. IFIP/IEEE International Symposium on Integrated Network Management (IM), (pp. 1202-1207). IEEE. Canada.
  18. Xia, W., Wen, Y., Foh, C.H., Niyato, D. & Xie, H. 2014. A survey on software-defined networking. IEEE Communications Surveys & Tutorials, 17(1), 27-51.
View article

Predatory Bacteria: A Possible Key for the Lock of Antibiotic Resistance
Avinash Rames. 2020. Transactions on Science and Technology, 7(1), 8 - 17

Abstract Antimicrobials that previously brought the medical sciences to a new strata are in grave danger due to the spread of antimicrobial resistance (AMR). Predatory bacteria that were discovered in the 1960s offer a glimmer of hope as they demonstrate the capacity to predate upon pathogenic Gram-negative bacteria. The current review attempts to describe the therapeutic potential of bacterial predators in multiple medical conditions that have bacteria as the aetiologic agent. In the same vein, the review provides accounts in which the safety of bacterial predators are substantiated in addition to providing a discourse which evaluates their usage method(s) that would offer the highest degree of benefit in clinical settings.

REFERENCES
  1. Afinogenova, A. V, Markelova, N.I. & Lambina, V.A.1987. Analysis of the interpopulational interactions in a 2-component bacterial system of Micavibrio admirandus--Escherichia coli. Nauchnye doklady vysshei shkoly. Biologicheskie nauki, 1987(6), 101–104.
  2. Al-Mujaini, A., Al-Kharusi, N., Thakral, A. & Wali, U.K. 2009. Bacterial keratitis: Perspective on epidemiology, Clinico-Pathogenesis, diagnosis and treatment. Sultan Qaboos University Medical Journal, 9(2), 184–195.
  3. Aminov, R.I. 2010. A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology, 1, 134.
  4. Atterbury, R.J., Hobley, L., Till, R., Lambert, C., Capeness, M.J., Lerner, T.R., Fenton, A.K., Barrow, P. & Sockett, R.E. 2011. Effects of oraly administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Applied and Environmental Microbiology, 77(16), 5794–5803.
  5. Attinger, C. & Wolcott, R. 2012. Clinically Addressing Biofilm in Chronic Wounds. Advances in Wound Care, 1(3), 127–132.
  6. Avidan, O., Petrenko, M., Becker, R., Beck, S., Linscheid, M., Pietrokovski, S. & Jurkevitch, E. 2017. Identification and Characterization of Differentially-Regulated Type IVb Pilin Genes Necessary for Predation in Obligate Bacterial Predators. Scientific Reports, 7(1), 1–12.
  7. Bassett, E.J., Keith, M.S., Armelagos, G.J., Martin, D.L. & Villanueva, A.R. 1980. Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350). Science, 209(4464), 1532–1534.
  8. Berezow, A.B. & Darveau, R.P. 2011. Microbial shift and periodontitis. Periodontology 2000, 55(1), 36–47.
  9. Boileau, M.J., Clinkenbeard, K.D. & Iandolo, J.J. 2011. Assessment of Bdellovibrio bacteriovorus 109J killing of Moraxella bovis in an in vitro model of infectious bovine keratoconjunctivitis. Canadian Journal of Veterinary Research, 75(4), 285–291.
  10. Boileau, M.J., Mani, R., Breshears, M.A., Gilmour, M., Taylor, J.D. & Clinkenbeard, K.D. 2016. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis. American Journal of Veterinary Research, 77(9), 1017–1028.
  11. Chiriac, P.-C., Duceac, L.-D., Manole, A., Poroch, V., Delcea, F., Stafie, L., Manole, M. & Cârlig, V. 2017. Acute Bacterial Gastroenteritis as a Healthcare-Associated Infection in Pediatrics. Current health sciences journal, 43(3), 275–281.
  12. Dashiff, A. & Kadouri, D.E. 2011. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Molecular Oral Microbiology, 26(1), 19–34.
  13. Dashiff, A., Junka, R.A., Libera, M. & Kadouri, D.E. 2011. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. Journal of Applied Microbiology, 110(2), 431–444.
  14. Dcosta, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W.L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G.B., Poinar, H.N. & Wright, G.D. 2011. Antibiotic resistance is ancient. Nature, 477(7365), 457–461.
  15. Dharani, S., Kim, D.H., Shanks, R.M.Q., Doi, Y. & Kadouri, D.E. 2018. Susceptibility of colistin-resistant pathogens to predatory bacteria. Research in Microbiology, 169(1), 52–55.
  16. Duncan, M.C., Gillette, R.K., Maglasang, M.A., Corn, E.A., Tai, A.K., Lazinski, D.W., Shanks, R.M.Q., Kadouri, D.E. & Camilli, A. 2019. High-throughput analysis of gene function in the bacterial predator Bdellovibrio bacteriovorus. mBio, 10(3), e01040-19.
  17. Dwidar, M., Monnappa, A.K. & Mitchell, R.J. 2012. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Reports, 45(2), 71–78.
  18. Essche, M. Van, Quirynen, M., Sliepen, I., Loozen, G., Boon, N., Eldere, J. Van & Teughels, W. 2011. Killing of anaerobic pathogens by predatory bacteria. Molecular Oral Microbiology, 26(1), 52–61.
  19. Faran Ali, S.M. & Tanwir, F. 2012. Oral microbial habitat a dynamic entity. Journal of Oral Biology and Craniofacial Research, 2(3), 181–187.
  20. Fratamico, P.M. & Cooke, P.H. 1996. Isolation of Bdellovibrios that prey on Escherichia coli O157:H7 and Salmonella species and application for removal of prey from stainless steel surfaces. Journal of Food Safety, 16(2), 161–173.
  21. Friedman, N.D., Temkin, E. & Carmeli, Y. 2016. The negative impact of antibiotic resistance. Clinical Microbiology and Infection, 22(5), 416–422.
  22. Garcia, C.J., Pericleous, A., Elsayed, M., Tran, M., Gupta, S., Callaghan, J.D., Stella, N.A., Franks, J.M., Thibodeau, P.H., Shanks, R.M.Q. & Kadouri, D.E. 2018. Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Scientific Reports, 8(1), 14025.
  23. Gillis, J.R. & Nakamura, M. 1970. Bdellovibrio bacteriovorus Parasitism in Shigella Species. Infection and immunity, 2(3), 340–341.
  24. Gupta, S., Tang, C., Tran, M. & Kadouri, D.E. 2016. Effect of predatory bacteria on human cell lines. PLoS ONE, 11(8), e0161242.
  25. Heta, S. & Robo, I. 2018. The Side Effects of the Most Commonly Used Group of Antibiotics in Periodontal Treatments. Medical Sciences, 6(1), 6.
  26. Hobley, L., Summers, J.K., Till, R., Milner, D.S., Atterbury, R.J., Stroud, A., Capeness, M.J., Gray, S., Leidenroth, A., Lambert, C., Connerton, I., Twycross, J., Baker, M., Tyson, J., Kreft, J.-U. & Sockett, R.E. 2020. Dual Predation by Bacteriophage and Bdellovibrio Can Eradicate E. coli Prey in Situations Where Single Predation Cannot. Journal of Bacteriology, 202(6), e00629-19.
  27. Hoffman, S.B. 2001. Mechanisms of Antibiotic Resistance. Compendium on Continuing Education for the Practicing Veterinarian, 23(5), 464–472.
  28. Hwang, I.Y., Tan, M.H., Koh, E., Ho, C.L., Poh, C.L. & Chang, M.W. 2014. Reprogramming microbes to be pathogen-Seeking killers. ACS Synthetic Biology, 3(4), 228–237.
  29. Iebba, V., Totino, V., Santangelo, F., Gagliardi, A., Ciotoli, L., Virga, A., Ambrosi, C., Pompili, M., Biase, R. V. De, Selan, L., Artini, M., Pantanella, F., Mura, F., Passariello, C., Nicoletti, M., Nencioni, L., Trancassini, M., Quattrucci, S. & Schippa, S. 2014. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Frontiers in Microbiology, 5(JUN), 280.
  30. Im, H., Choi, S.Y., Son, S. & Mitchell, R.J. 2017. Combined Application of Bacterial Predation and Violacein to Kill Polymicrobial Pathogenic Communities. Scientific Reports, 7(1), 1–10.
  31. Im, H., Dwidar, M. & Mitchell, R.J. 2018. Bdellovibrio bacteriovorus HD100, a predator of Gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME Journal, 12(8), 2090–2095.
  32. Kadouri, D. & O’Toole, G.A. 2005. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Applied and Environmental Microbiology, 71(7), 4044–4051.
  33. Kadouri, D., Venzon, N.C. & O’Toole, G.A. 2007. Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Applied and Environmental Microbiology, 73(2), 605–614.
  34. Kadouri, D.E., To, K., Shanks, R.M.Q. & Doi, Y. 2013. Predatory Bacteria: A Potential Ally against Multidrug-Resistant Gram-Negative Pathogens. PLoS ONE, 8(5), e63397.
  35. Lambina, V.A., Afinogenova, A. V., Romaǐ Penabad, S., Konovalova, S.M. & Pushkareva, A.P. 1982. Micavibrio admirandus gen. et sp. nov. Mikrobiologiya, 51(1), 114–117.
  36. Loozen, G., Boon, N., Pauwels, M., Slomka, V., Rodrigues Herrero, E., Quirynen, M. & Teughels, W. 2015. Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe, 35, 45–53.
  37. Mahmoud, K.K. & Koval, S.F. 2010. Characterization of type IV pili in the life cycle of the predator bacterium Bdellovibrio. Microbiology, 156(4), 1040–1051.
  38. Markelova, N.Y. 2010. Predacious bacteria, Bdellovibrio with potential for biocontrol. International Journal of Hygiene and Environmental Health, 213(6), 428–431.
  39. Melander, R.J., Zurawski, D. V. & Melander, C. 2018. Narrow-spectrum antibacterial agents. MedChemComm, 9(1), 12–21.
  40. Monnappa, A.K., Dwidar, M., Seo, J.K., Hur, J.H. & Mitchell, R.J. 2014. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Scientific Reports, 4(1), 1–8.
  41. Navidinia, M. 2016. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. Journal of paramedical sciences, 7(3), 43–57.
  42. Nelson, M.L., Dinardo, A., Hochberg, J. & Armelagos, G.J. 2010. Brief communication: Mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia 350-550 CE. American Journal of Physical Anthropology, 143(1), 151–154.
  43. Pantanella, F., Iebba, V., Mura, F., Dini, L., Totino, V., Neroni, B., Bonfiglio, G., Trancassini, M., Passariello, C. & Schippa, S. 2018. Behaviour of Bdellovibrio bacteriovorus in the presence of gram-positive Staphylococcus aureus. New Microbiologica, 41(2), 145–152.
  44. Parikh, N.S. & Ahlawat, R. 2020. Helicobacter pylori. StatPearls Publishing.
  45. Pasternak, Z., Njagi, M., Shani, Y., Chanyi, R., Rotem, O., Lurie-Weinberger, M.N., Koval, S., Pietrokovski, S., Gophna, U. & Jurkevitch, E. 2014. In and out: An analysis of epibiotic vs periplasmic bacterial predators. ISME Journal, 8(3), 625–635.
  46. Patini, R., Cattani, P., Marchetti, S., Isola, G., Quaranta, G. & Gallenzi, P. 2019. Evaluation of predation capability of periodontopathogens bacteria by Bdellovibrio bacteriovorus HD100. An in vitro Study. Materials, 12(12), 2008.
  47. Rames, A. 2019. An update on the detection methods of Parachlamydia acanthamoebae , an atypical agent of pneumonia. Asia Pacific Journal of Molecular Biology and Biotechnology, 27(3), 86–100.
  48. Romanowski, E.G., Stella, N.A., Brothers, K.M., Yates, K.A., Funderburgh, M.L., Funderburgh, J.L., Gupta, S., Dharani, S., Kadouri, D.E. & Shanks, R.M.Q. 2016. Predatory bacteria are nontoxic to the rabbit ocular surface. Scientific Reports, 6, 30987.
  49. Rotem, O., Pasternak, Z. & Jurkevitch, E. 2014. The genus Bdellovibrio and Like Organisms. The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria, pp. 3–17, Springer-Verlag Berlin Heidelberg.
  50. Russo, R., Chae, R., Mukherjee, S., Singleton, E., Occi, J., Kadouri, D. & Connell, N. 2015. Susceptibility of Select Agents to Predation by Predatory Bacteria. Microorganisms, 3(4), 903–912.
  51. Russo, R., Kolesnikova, I., Kim, T., Gupta, S., Pericleous, A., Kadouri, D.E. & Connell, N.D. 2019. Susceptibility of virulent Yersinia pestis bacteria to predator bacteria in the lungs of mice. Microorganisms, 7(1), 2.
  52. Sattar, S.B.A. & Sharma, S. 2018. Pneumonia, Bacterial. StatPearls Publishing.
  53. Schoeffield, A.J., Williams, H.N., Turng, B.F. & Falkler, W.A. 1996. A comparison of the survival of intraperiplasmic and attack phase Bdellovibrios with reduced oxygen. Microbial Ecology, 32(1), 35–46.
  54. Shanks, R.M.Q., Davra, V.R., Romanowski, E.G., Brothers, K.M., Stella, N.A., Godboley, D. & Kadouri, D.E. 2013. An Eye to a Kill: Using Predatory Bacteria to Control Gram-Negative Pathogens Associated with Ocular Infections. PLoS ONE, 8(6), e66723.
  55. Shatzkes, K., Chae, R., Tang, C., Ramirez, G.C., Mukherjee, S., Tsenova, L., Connell, N.D. & Kadouri, D.E. 2015. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. Scientific Reports, 5, 12899.
  56. Shatzkes, K., Singleton, E., Tang, C., Zuena, M., Shukla, S., Gupta, S., Dharani, S., Onyile, O., Rinaggio, J., Connell, N.D. & Kadouri, D.E. 2016. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. mBio, 7(6), e01847-16.
  57. Shemesh, Y. & Jurkevitch, E. 2004. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environmental Microbiology, 6(1), 12–18.
  58. Stolp, H. & Starr, M.P. 1963. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie van Leeuwenhoek, 29(1), 217–248.
  59. Sun, Y., Ye, J., Hou, Y., Chen, H., Cao, J. & Zhou, T. 2017. Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms. Japanese Journal of Infectious Diseases, 70(5), 485–489.
  60. Tahara, T., Gavina, M.K.A., Kawano, T., Tubay, J.M., Rabajante, J.F., Ito, H., Morita, S., Ichinose, G., Okabe, T., Togashi, T., Tainaka, K.I., Shimizu, A., Nagatani, T. & Yoshimura, J. 2018. Asymptotic stability of a modified Lotka-Volterra model with small immigrations. Scientific Reports, 8(1), 1–7.
  61. Varon, M. & Shil, M. 1968. Interaction of Bdellovibrio bacteriovorus and host bacteria. I. Kinetic studies of attachment and invasion of Escherichia coli B by Bdellovibrio bacteriovorus. Journal of Bacteriology, 95(3), 744–753.
  62. Varon, M. & Zeigler, B.P. 1978. Bacterial predator-prey interaction at low prey density. Applied and Environmental Microbiology, 36(1), 11–17.
  63. Wang, Z., Kadouri, D.E. & Wu, M. 2011. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics, 12(1), 453.
  64. Willis, A.R., Moore, C., Mazon-Moya, M., Krokowski, S., Lambert, C., Till, R., Mostowy, S. & Sockett, R.E. 2016. Injections of Predatory Bacteria Work Alongside Host Immune Cells to Treat Shigella Infection in Zebrafish Larvae. Current Biology, 26(24), 3343–3351.
  65. Wong, R.W.K., Hägg, U., Samaranayake, L., Yuen, M.K.Z., Seneviratne, C.J. & Kao, R. 2010. Antimicrobial activity of Chinese medicine herbs against common bacteria in oral biofilm. A pilot study. International Journal of Oral and Maxillofacial Surgery, 39(6), 599–605.
  66. Young, K.D. 2006. The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews, 70(3), 660–703.
  67. Zaman, S. Bin, Hussain, M.A., Nye, R., Mehta, V., Mamun, K.T. & Hossain, N. 2017. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus, 9(6), e1403.
View article

Short Communication

Small Island Avifauna Diversity at Sebatik Island of Sabah, Malaysia
Wing-Shen Lim; Andy Russel Mojiol. 2020. Transactions on Science and Technology, 7(1), 18 - 23
Abstract Preliminary study was commenced to investigate the avifauna diversity presented on Sebatik Island in Sabah. Opportunistic sampling was conducted at four villages and along Sungai Haji Kuning for three days. A total of 28 avifauna individuals belonged to 13 different species were observed on Sebatik Island, which were mainly comprised of carnivorous and non-threatened resident species. All recorded migratory avifauna species, as well as the five avifauna species sighted along Sungai Haji Kuning, were determined as carnivores, hence indicating the relationship between migratory behaviour and habitat type with feeding guild of local avifauna. Since that there were no significant differences in avifauna species composition and abundance, thus both human settlement and riverine mangrove habitats were vital to the survival of both migratory and resident species. Because of that, conservation effort is required to preserve this small island habitat and its avifauna inhabitants from being threatened by anthropogenic disturbances.

REFERENCES
  1. Ancrenaz, M. 2013. Field Manual: Monitoring Large Terrestrial Mammals in Sabah. Sandakan, Sabah: Sabah Forestry Department.
  2. Basnet, T. B., Rokaya, M. B., Bhattarai, B. P. & Münzbergová, Z. 2016. Heterogeneous Landscapes on Steep Slopes at Low Altitudes as Hotspots of Bird Diversity in a Hilly Region of Nepal in the Central Himalayas. PLoS ONE, 11(3), 1–19.
  3. Boonratana, R. & Sharma, D. S. 1997. Checklist of wildlife species recorded in the lower Kinabatangan, Sabah. The Journal of Wildlife Management and Research Sabah, 1, 47–60.
  4. David, G., Roslan, A., Mamat, M. A., Abdullah, M. T. & Hamza, A. A. 2016. A Brief Survey on Birds from Pulau Perhentian Besar, Terengganu. Journal of Sustainable Science and Management Special Issue Number 1: The International Seminar on the Straits of Malacca and the South China Sea 2016, 11–18.
  5. Francis, C. M. 2007. A Pocket Guide to the Birds of Borneo. Kota Kinabalu, Sabah: The Sabah Society.
  6. Gilbert, E. A., Sompud, J., Igau, O. A., Lakim, M., Repin, R., & Biun, A. 2018. An Update on the Bird Population in Gaya Island. Transactions on Science and Technology, 5(2), 171–176.
  7. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9 pp.
  8. International Union for Conservation of Nature. 2020. IUCN Red List of Threatened Species. Retrieved from: https://www.iucnredlist.org on 3 April 2020.
  9. Jones, D. & Nealson, T. 2005. Impacts of bird watching on communities and species: long-term and short-term responses in rainforest and eucalypt habitats. Technical Report. Queensland: CRC for Sustainable Tourism Pty Ltd.
  10. Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., Mutke, J. & Barthlott, W. 2009. A Global Assessment of Endemism and Species Richness across Island and Mainland Regions. Proceedings of the National Academy of Sciences, 106(23), 9322–9327.
  11. Lerman, S. B., Nislow, K. H., Nowak, D. J., DeStefano, S., King, D. I., & Jones-Farrand, D. T. 2014. Using urban forest assessment tools to model bird habitat potential. Landscape and Urban Planning, 122, 29–40.
  12. Lim, W. S. & Mojiol, A. R. 2019. A preliminary assessment on avian community in the urban forest of Universiti Malaysia Sabah. Transactions on Science and Technology, 6(3), 292–297.
  13. Lim, W. S., Nurliza, H., & Mojiol, A. R. 2019. Short report: Viewable wildlife species along Sungai Haji Kuning in Sebatik Island, Sabah. Transactions on Science and Technology, 6(4), 352–356.
  14. Magurran, A. E. 2004. Measuring Biological Diversity. Oxford: Blackwell Publishing.
  15. Miller, J. R., Wiens, J. A., Hobbs, N. T., & Theobald, D. M. 2003. Effects of Human Settlement on Bird Communities in Lowland Riparian Areas of Colorado (USA). Ecological Applications, 13(4), 1041–1059.
  16. Mojiol, A. R., Hassan, A., Maluda, J., & Immit, S. 2008. Rapid assessment on the abundance of bird species utilising the Kota Kinabalu Wetland Centre mangroves. Journal of Tropical Biology and Conservation, 4(1), 99–107.
  17. Mojiol, A. R., Kungin, D., Ganang, G., Lim, R., & Godong, E. 2011. List of birds collected using mist-net methods and observation survey from two sites at Lanjak Entimau Wildlife Forest Reserve, Sarawak. In. Haji Mohamed, Isa Ipor, Meekiong K., Sapuan Ahmad, & A. Ampeng (Eds.). Lanjak Entimau Wildlife Sanctuary “Hidden Jewel of Sarawak” (pp. 237–250). Kuala Lumpur: Academy of Science Malaysia.
  18. Peh, K. S. H., De Jong, J., Sodhi, N. S., Lim, S. L. H. & Yap. C. A. M. 2005. Lowland Rainforest Avifauna and Human Disturbance: Persistence of Primary Forest Birds in Selectively Logged Forests and Mixed-Rural Habitats of southern Peninsular Malaysia. Journal of Biological Conservation, 123(4), 489–505.
  19. Styring, A. R., Ragai, R., Unggang, J., Stuebing, R., Hosner, P. A., & Sheldon, F. H. 2011. Bird community assembly in Bornean industrial tree plantations: Effects of forest age and structure. Forest Ecology and Management, 261(3), 531–544.
  20. Taylor, S. & Kumar, L. 2016. Global Climate Change Impacts on Pacific Islands Terrestrial Biodiversity: A Review. Tropical Conservation Science, 9(1), 203–223.
  21. Turner, C. S., King, T., O’ Malley, R., Cummings, M. & Raines, P. 2002. Danjungan Islands Biodiversity Survey. Terrestrial Final Report. London: Coral Cay Conservation.
  22. Universiti Malaysia Sabah. 2020). Small Island Research Centre (SIRC). Retrieved from: http://www.ums.edu.my/sirc/index.php/en/about-sirc 3 April 2020.
  23. Yahya, M. S., Puan, C. L., Azhar, B., Atikah, S. N., & Ghazali, A. 2016. Nocturnal bird composition in relation to habitat heterogeneity in small scale oil palm agriculture in Malaysia. Agriculture, Ecosystems and Environment, 233, 140–146.
  24. Yap, C. A. M., Sodhi, N. S. & Peh, K. S. H. 2007. Phenology of Tropical Birds in Peninsular Malaysia: Effects of Selective Logging and Food Resources. The Auk, 124(3), 945–961.
View article

Negative Result

Physicomechanical Properties of Plywood from Neolamarckia cadamba using Different Adhesive Spreads of Phenol Resorcinol Formaldehyde
Kang Chiang Liew; Yung Kang Fung. 2020. Transactions on Science and Technology, 7(1), 24 - 28
Abstract The objectives of this study were to determine the physical and mechanical properties of plywood from veneers of Neolamarckia cadamba by using four different adhesive spreads (150, 200, 250 and 300 g/m2) of phenol resorcinol formaldehyde (PRF). Veneers were assembled perpendicularly to each other’s grain direction before being cut and tested for density, bending test (Modulus of Elasticity, MOE and Modulus of Rupture, MOR), shear test and delamination. The results were used to compare with control adhesive spread of 250 g/m2 which is used by the industry. The physical test based on ASTM D734 showed trend to increase in density with the increment of adhesive spreads. For the mechanical test based on JAS 233:2003, although none of the MOE and MOR values of the four adhesive spreads fulfilled the requirement of JAS standard, their values increased with the increment of adhesive spreads. Shear value increased from 150 to 250 g/m2 but dropped at 300 g/m2. The delamination test showed no delamination (0%) to all the four different adhesive spreads which showed the water resistance properties of PRF. Generally, the results of both physical and mechanical test showed no difference for every increment of 50 g/m2 of adhesive spreads from 200 g/m2 onwards. Since the result showed that 200 g/m2 no significant difference using p < 0.05 to 250 g/m2 in all the physical and mechanical test, the adhesive spreads of PRF could be reduced to 200 g/m2 in plywood manufacturing in order to reduce cost and pollution without affecting the physical and mechanical properties of plywood.

REFERENCES
  1. Correal, J. F., & Ramirez, F. 2010. Adhesive bond performance in glue line shear and bending for glued laminated guadua bamboo. Journal of Tropical Forest Science, 22(4), 433-439.
  2. Hartono, R., Iswanto, A. H., Sucipto, T., Cahyono, T. D., Dwianto, W. & Darmawan, T. 2019. The effect of glue spreads and adhesive type on quality of laminated board from oil palm trunk. In: IOP Conference Series: Earth and Environmental Science, 260(1), 012079.
  3. Jøker, D. 2000. Neolamarckia cadamba (Roxb.) Bosser. Seed Leaflet, No 17.
  4. Naito, K., Onta, M., & Kogo, Y. 2012. The effect of adhesive thickness on tensile and shear strength of polyimide adhesive. International Journal of Adhesion and Adhesives, 36(2012), 77-85.
  5. Sahri, M. H. 1990. The durability of phenol-resorcinol formaldehyde glue joints on three Malaysian hardwood species. Pertanika, 13(2), 159-163.
  6. Yang, M., & Rosentrater, K. 2015. Environmental effects and economic analysis of adhesives: A review of life cycle assessment (LCA) and techno-economic analysis (TEA). In: 2015 ASABE Annual International Meeting (pp. 1). American Society of Agricultural and Biological Engineers.
View article




UniSE Press