Tomato - Characteristics, Processing and Future Trends in Automation for Smallholder Processing Industry: A Short Review

Zykamilia Kamin; Chiam Chel Ken; SM Anisuzzaman; Nurhamizah Abdul Ghani; Mohammad Abdullah; Mohd Hardyianto Vai Bahrun; Awang Bono.

Transactions on Science and Technology, 8(3-2), 210 - 219.

Back to main issue

ABSTRACT
Tomato is one of a globally important warm-season vegetable crop. Overall, the whole fruit is edible. It contains sorbitol, phenylalanine, putrescine and vitamins such as B1, B2, and B3. Tomato also contains carotenoids such as α‐carotene, β‐carotene, lycopene, and xanthophylls. In addition, they also contain phytosterol, essential oils (terpenes geraniol and farnesol), flavonoids (quercetin, kaempferol, and isorhamnetin) and alkaloids (saponins). Since the processing of tomatoes affecting the content of nutrients, it is important to understand the details on how tomatoes are being processed. Tomato farming in Malaysia is mainly concentrated in the highlands. Kundasang, Sabah is one of the few areas where smallholder-farming tomatoes are planted due to its suitable environment and temperature. Although tomatoes from smallholder farmers are usually for direct consumption, stockpiling occurred recently due to movement-controlled order enforced in Malaysia to control COVID-19 transmission, affecting the livelihood of smallholder farmers in Kundasang mainly due to logistics issues. Therefore, the purpose of this paper is to review on tomato, its nutrients content, and processing technology giving importance on aspect of nutrient retention by monitoring and controlling process parameters using low-cost IoT-based automation and its future directions for smallholder tomato farmers.

KEYWORDS: Automation; IoT; Processing; Smallholder farmers; Tomatoes



Download this PDF file

REFERENCES
  1. Anterola, A. M. & Lewis, N. G. 2002. Trends in lignin modification: A comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry, 61(30), 221-294.
  2. Ardiansah, I., Bafdal, N., Suryadi, E. & Bono, A. 2020. Greenhouse monitoring and automation using arduino: A review on precision farming and Internet of Things (IoT). International Journal on Advanced Science, Engineering and Information Technology, 10(2), 703–709.
  3. Barringer, S. 2004a. Frozen Tomatoes. In: Hui, Y. H., Ghazala, S., Graham, D. M., Murrell K. D. & Nip, W.-K. (Eds.). Handbook of Vegetable Preservation and Processing. New York: Marcel Dekker, Inc.
  4. Barringer, S. 2004b. Production, Freezing, and Storage of Tomato Sauces and Slices. In: Hui, Y. H., Ghazala, S., Graham, D. M., Murrell K. D. & Nip, W.-K. (Eds.). Handbook of Frozen Foods (1st edition). New York: Marcel Dekker, Inc.
  5. Burns, J., Fraser, P. D. & Bramley, P. M. 2003. Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry, 62(6), 939–947.
  6. Butt, M. S. & Sultan, M. T. 2018. Nutritional Profile of Vegetables and Its Significance in Human Health. In: Siddiq, M. & Uebersax, M. A. (Eds.). Handbook of Vegetables and Vegetable Processing (Vol. 2). Hoboken: John Wiley & Sons Ltd.
  7. Buttery, R. G., Teranishi, R., Flath, R. A. & Ling, L. C. 1990. Identification of Additional Tomato Paste Volatiles. Journal of Agricultural and Food Chemistry, 38(3), 792–795.
  8. Cebolla-Cornejo, J., Roselló, S., Valcárcel, M., Serrano, E., Beltrán, J. & Nuez, F. 2011. Evaluation of genotype and environment effects on taste and aroma flavor components of Spanish fresh tomato varieties. Journal of Agricultural and Food Chemistry, 59(6), 2440–2450.
  9. Crozier, A., Lean, M. E. J., McDonald, M. S. & Black, C. 1997. Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. Journal of Agricultural and Food Chemistry, 45(3), 590–595.
  10. Du, X., Song, M., Baldwin, E. & Rouseff, R. 2015. Identification of sulphur volatiles and GC-olfactometry aroma profiling in two fresh tomato cultivars. Food Chemistry, 171, 306–314.
  11. Food and Agriculture Organization (FAO). 2016. Crops Production. (http://www.fao.org/faostat/en/#data/QC). Last accessed on 5 October 2020.
  12. Food and Agriculture Organization (FAO). 2017. Crops Production. (http://www.fao.org/faostat/en/#data/QC). Last accessed on 5 October 2020.
  13. Firmansyah, R., Yusuf, M., Saputra, P. P. S., Prasetyo, M. E., Mochtar, F. M. & Kurniawan, F. A. 2020. IoT Based Temperature Control System Using Node MCU ESP 8266. Advances in Engineering Research, 196, 401–407.
  14. Fraser, P. D., Truesdale, M. R., Bird, C. R., Schuch, W. & Bramley, P. M. 1994. Carotenoid biosynthesis during tomato fruit development (Evidence for tissue-specific gene expression). Plant Physiology, 105(1), 405–413.
  15. Friedman, M., Fitch, T. E. & Yokoyama, W. E. 2000. Lowering of plasma LDL cholesterol in hamsters by the tomato glycoalkaloid tomatine. Food and Chemical Toxicology, 38(7), 549–553.
  16. Garg, N. & Cheema, D. S. 2011. Assessment of fruit quality attributes of tomato hybrids involving ripening mutants under high temperature conditions. Scientia Horticulturae, 131(1), 29–38.
  17. Gartner, C., Stahl, W. & Sies, H. 1997. Lycopene is more bioavailable from fresh tomatoes13 from tomato paste than. The American Journal of Clinical Nutrition, 66(1), 116–122.
  18. Gubarev, M. I., Enioutina, E. Y., Taylor, J. L., Visic, D. M. & Daynes, R. A. 1998. Plant-derived glycoalkaloids protect mice against lethal infection with Salmonella typhimurium. Phytotherapy Research, 12(2), 79–88.
  19. Hakim, D. P. A. R., Budijanto, A. & Widjanarko, B. 2018. Sistem Monitoring Penggunaan Air PDAM pada Rumah Tangga Menggunakan Mikrokontroler NodeMCU berbasis Smartphone Android. Jurnal IPTEK, 22(2), 9–18.
  20. Heal, K. G., Sheikh, N. A., Hollingdale, M. R., Morrow, W. J. W. & Taylor-Robinson, A. W. 2001. Potentiation by a novel alkaloid glycoside adjuvant of a protective cytotoxic T cell immune response specific for a preerythrocytic malaria vaccine candidate antigen. Vaccine, 19(30), 4153–4161.
  21. Heinonen, M. I., Ollilainer, V., Linkola, E. K., Varo, P. T. & Koivistoinen, P. E. 1989. Carotenoids in Finnish Foods: Vegetables, Fruits, and Berries. Journal of Agricultural and Food Chemistry, 37(3), 655–659.
  22. Hobson, G. & Grierson, D. 1993. Tomato. In: Seymour, G. B., Taylor, J. E. & Tucker, G. A. (Eds.). Biochemistry of Fruit Ripening (1st edition). Springer Netherlands.
  23. Khachik, F., Carvalho, L., Bernstein, P. S., Muir, G. J., Zhao, D. Y. & Katz, N. B. 2002. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Experimental Biology and Medicine, 227(10), 845–851.
  24. Klopotek, Y., Otto, K. & Böhm, V. 2005. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity. Journal of Agricultural and Food Chemistry, 53(14), 5640–5646.
  25. Knoema. 2020. Malaysia Crops - Tomatoes Production. (https://knoema.com/FAOPRDSC2020/production-statistics-crops-crops processed?tsId=1209260). Last accessed on 1 March 2021.
  26. Kumar, A., Singh, V., Kumar, S., Jaiswal, S. P. & Bhadoria, V. S. in press. IoT enabled system to monitor and control greenhouse. Proceedings of the National Conference on Functional Materials: Emerging Technologies and Applications in Material Science (NCFM-2020). 25-26 July, 2020, Uttar Pradesh, India.
  27. Lee, K. R., Kozukue, N., Han, J. S., Park, J. H., Chang, E. Y., Baek, E. J., Chang, J. S. & Friedman, M. 2004. Glycoalkaloids and Metabolites Inhibit the Growth of Human Colon (HT29) and Liver (HepG2) Cancer Cells. Journal of Agricultural and Food Chemistry, 52(10), 2832–2839.
  28. Leoni, C. 2002. Improving the nutritional quality of processed fruits and vegetables: the case of tomatoes. In: Jongen, W. (Eds.). Fruit and Vegetable Processing: Improving Quality (1st edition). England: Woodhead Publishing Ltd.
  29. Long, M., Millar, D. J., Kimura, Y., Donovan, G., Rees, J., Fraser, P. D., Bramley, P. M. & Bolwell, G. P. 2006. Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato: Identification of a high antioxidant fruit line. Phytochemistry, 67(16), 1750–1757.
  30. Mardiyanto, A. 2019. Design and Development of Real-Time Plant Process Control Monitoring System in Organic Fertilizer Production. Proceedings of the International Conference on Science and Innovated Engineering (i-COSINE). 21-22 October, 2018, Aceh, Indonesia. pp 012106.
  31. Marković, K., Vahčić, N., Kovačević Ganić, K. & Banović, M. 2007. Aroma volatiles of tomatoes and tomato products evaluated by solid-phase microextraction. Flavour and Fragrance Journal, 22(5), 395–400.
  32. McGehee, D. S., Krasowski, M. D., Fung, D. L., Wilson, B., Gronert, G. A. & Moss, J. 2000. Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology, 93(2), 510–519.
  33. Majlis Keselamatan Negara (MKN). 2020. Majlis Keselamatan Negara. (https://facebook.com/MajlisKeselamatanNegara/posts/2816919971744224). Last accessed on 5 October 2020.
  34. Motamedzadegan, A. & Tabarestani, H. S. 2018. Tomato Production, Processing, and Nutrition. In: Siddiq. M. & Uebersax, M. A. (Eds.). Handbook of Vegetables and Vegetable Processing (2nd edition). West Sussex: John Wiley & Sons Ltd.
  35. Muir, S. R., Collins, G. J., Robinson, S., Hughes, S., Bovy, A., Ric De Vos, C. H., Van Tunen, A. J. & Verhoeyen, M. E. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology, 19(5), 470–474.
  36. Muratore, G., Rizzo, V., Licciardello, F. & Maccarone, E. 2008. Partial dehydration of cherry tomato at different temperature, and nutritional quality of the products. Food Chemistry, 111(4), 887–891.
  37. Nimawat, D. & Shrivastava, A. 2016. Increasing Productivity through Automation. European Journal of Advances in Engineering and Technology, 3(2), 45–47.
  38. Nižetić, S., Šolić, P., López-de-Ipiña González-de-Artaza, D. & Patrono, L. 2020. Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of Cleaner Production, 274.
  39. Ong, P. K. C. & Liu, S. Q. 2018. Flavor and Sensory Characteristics of Vegetables. In: Siddiq, M. & Uebersax, M. A. (Eds.). Handbook of Vegetables and Vegetable Processing (2nd edition). West Sussex: John Wiley & Sons Ltd.
  40. Ooi, Y. B. H. & Dambul, R. 2020. Food Security Challenges during and Post Movement Restrictions of COVID-19 in Southeast Asia. 50(2), 123–131.
  41. Ortiz-Serrano, P. & Gil, J. V. 2007. Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on three tomato varieties (Solanum lycopersicum L.). Journal of Agricultural and Food Chemistry, 55(22), 9170–9176.
  42. Pérez-Conesa, D., García-Alonso, J., García-Valverde, V., Iniesta, M. D., Jacob, K., Sánchez-Siles, L. M., Ros, G. & Periago, M. J. 2009. Changes in bioactive compounds and antioxidant activity during homogenization and thermal processing of tomato puree. Innovative Food Science and Emerging Technologies, 10(2), 179–188.
  43. Radovich, T. J. K. 2018. Biology and Classification of Vegetables. In: Siddiq, M.& Uebersax, M. A. (Eds.). Handbook of Vegetables and Vegetable Processing (2nd edition). West Sussex: John Wiley & Sons Ltd.
  44. Rahim, H., Wahab, M. A. M. A., Amin, M. Z. M., Harun, A. & Haimid, M. T. 2017. Technological adoption evaluation of agricultural and food sectors towards modern agriculture: Tomato. Economic and Technology Management Review, 12(2017), 41–53.
  45. Sanjeev, R., Rathidevi, S., Surendar Pandi, M. & Rajkanna, U. 2019. Chemical process parameter surveillance using IoT. International Journal of Recent Technology and Engineering, 7(6), 438–441.
  46. Selli, S., Kelebek, H., Ayseli, M. T. & Tokbas, H. 2014. Characterization of the most aroma-active compounds in cherry tomato by application of the aroma extract dilution analysis. Food Chemistry, 165, 540–546.
  47. Shen, Y. C., Chen, S. L. & Wang, C. K. 2007. Contribution of tomato phenolics to antioxidation and down-regulation of blood lipids. Journal of Agricultural and Food Chemistry, 55(16), 6475–6481.
  48. Siddiq, M. & Uebersax, M. A. (Eds.). 2018. Handbook of Vegetables and Vegetable Processing (2nd edition). West Sussex: John Wiley & Sons Ltd.
  49. Thorne, H. V., Clarke, G. F. & Skuce, R. 1985. The inactivation of herpes simplex virus by some Solanaceae glycoalkaloids. Antiviral Research, 5(6), 335–343.
  50. Ueda, Y., Yonemitsu, M., Tsubuku, T., Sakaguchi, M. & Miyajima, R. 1997. Flavor characteristics of glutathione in raw and cooked foodstuffs. Bioscience, Biotechnology and Biochemistry, 61(12), 1977–1980.
  51. U.S. Department of Agriculture (USDA). 2016. USDA National Nutrient Database for Standard Reference Release 18. (http://www.nal.usda.gov/fnic/foodcomp/Data/). Last accessed on 15 October 2020.
  52. Villa-Henriksen, A., Edwards, G. T. C., Pesonen, L. A., Green, O. & Sørensen, C. A. G. 2020. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosystems Engineering, 191, 60–84.