Effect of Garlic and Turmeric Powders on In Vitro Digestibility of the Cooked Rice

Ai Ling Ho; Chen Er Wong; Chee Kiong Siew.

Transactions on Science and Technology, 8(3-2), 164 - 171.

Back to main issue

Consumers nowadays are interested in foods with low glycemic index (GI) and high indigestible carbohydrate content. In Asia, white rice is the staple food and is generally considered as a readily digestible and high GI food. Occasionally, white rice is cooked by mixing with other ingredients such as herbs and spices. This study is carried out to determine the total phenolic content and the effect of in vitro digestibility on cooked white rice with added garlic and turmeric powders. Rice cooked with addition of turmeric powder (3 % w/w) showed the highest total phenolic content (92.02 mg GAE/100 g) among all the cooked rice samples. The effect of incorporating garlic powder (3 % w/w) and turmeric powder (3 % w/w) into the rice preparation was determined using an in vitro digestion protocol. Results show that by incorporating either garlic or turmeric powder into the rice, starch digestibility was significantly reduced. Rice with added turmeric powder showed a greater reduction in digestibility with significantly lower fraction of rapidly digestible starch (41.5 %; white rice 57.6 %) beside higher fraction of slowly digestible starch (36.1 %; white rice 28.4 %) and resistant starch fraction (22.6 %; white rice 14%). Overall, both spices were able to inhibit starch digestion which can be considered as a potential ingredient in lowering starch digestibility in the cooked rice.

KEYWORDS: In vitro digestibility, polyphenol, rice, spices, starch.

Download this PDF file

  1. Abdul Raji, M. N., Abdul Karim, S., Ishak, F. A. C. & Arshad, M. N. 2017. Past and present practices of the malay food heritage and culture in Malaysia. Journal of Ethnic Foods, 4, 221-231.
  2. Ambigaipalan, P., Hoover, R., Donner, E. & Liu, Q. 2014. Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties. Food Chemistry, 14, 175-184.
  3. Aune, D., Norat, T., Romundstad, P. & Vatten, L. J. 2013. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose response meta analysis of cohort studies. European Journal of Epidemiology, 28(11), 845-858.
  4. Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Balance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carrière, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A. R., Martins, C., Marze, S., McClements, D. J., Ménard, O., Minekus, M., Portmann, R., Santos, C. N., Souchon, I., Singh, R. P., Vegarud, G. E., Wickham, M. S. J., Weitschies, W. & Recio, I. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991-1014.
  5. Butala, M. A., Kukkupuni, S. K., Venkatasubramanian, P. & Vishnuprasad, C. N. 2018. An ayurvedic anti‐diabetic formulation made from Curcuma longa L. and Emblica officinalis L. inhibits α‐amylase, α‐glucosidase, and starch digestion in vitro. Starch‐Stärke, 70(5-6), 1700182.
  6. Camelo-Méndez, G. A., Agama-Acevedo, E., Sanchez-Rivera, M. M. & Bello-Pérez, L. A. 2016. Effect on in vitro starch digestibility of Mexican blue maize anthocyanins. Food Chemistry, 211, 281-284.
  7. Chusak, C., Ang, J. Y. Y., Lim, J. Z., Pasukamonset, P., Jeyakumar, C. H., Ngamukote, S. & Adisakwattana, S. 2019. Impact of Clitoria ternatea (butterfly pea) flower on in vitro starch digestibility, texture and sensory attributes of cooked rice using domestic cooking methods. Food Chemistry, 646-652.
  8. da Silva Lindemann, I., Dittgen, C. L., de Souza Batista, C. dos Santos, J. P., Bruni, G. P., Elias, M. C. & Vanier, N. L. 2021. Rice and common bean blends: Effect of cooking on in vitro starch digestibility and phenolics profile. Food Chemistry, 340, 127908.
  9. Dhital, S., Katawal, S. B. & Shrestha, A. K. 2010. Formation of resistant starch during processing and storage of instant noodles. International Journal of Food Properties, 13(3), 454-463.
  10. Englyst, K., Goux, A., Meynier, A., Quigley., M. & Englyst, H. 2018. Inter-laboratory validation of the starch digestibility method for determination of rapidly digestible and slowly digestible starch. Food Chemistry, 245, 1183-1189.
  11. Englyst, H. N. & Hudson, G. J. 1987. Colorimetric method for routine measurement of dietary fibre as non-starch polysaccharides. A comparison with gas-liquid chromatography. Food Chemistry, 24(1), 63–76.
  12. FAO. 2019. World food and agriculture: Statistical pocketbook. Rome: Food and Agriculture Organization.
  13. Fuwa, M., Nakanishi, Y. & Moritaka, H. 2016. Effect of xanthan gum on blood sugar level after cooked rice consumption. Food Science and Technology Research, 22(1), 117–126.
  14. Gao, M. R., Xu, Q. D., He, Q., Sun, Q. & Zeng, W. C. 2019. A theoretical and experimental study: The influence of different standards on the determination of total phenol content in the Folin–Ciocalteu assay. Journal of Food Measurement and Characterization, 13(2), 1349-1356.
  15. Giri, S., Banerji, A, Lele, S. S. & Ananthanarayan L. 2017. Starch digestibility and glycaemic index of selected Indian traditional foods: Effects of added ingredients. International Journal of Food Properties, 20(S1), S290–S305.
  16. Hu, J. L., Nie, S. P., Li, N., Min, F. F., Li, C., Gong, D. & Xie, M. Y. 2014. Effect of gum arabic on glucose levels and microbial shortchain fatty acid production in white rice porridge model and mixed grain porridge model. Journal of Agricultural and Food Chemistry, 62(27), 6408–6416.
  17. Jenkins, D. J. A., Jenkins, A. L., Wolever, T. M. S., Collier, G. R., Rao, A. V. & Thompson, L. U. 1987. Starchy foods and fiber: Reduced rate of digestion and improved carbohydrate metabolism. Scandinavian Journal of Gastroenterology, 22(s129), 132-141.
  18. Kaur, B., Ranawana, V. & Henry, J. 2016. The glycemic index of rice and rice products: A review, and table of GI values. Critical Reviews in Food Science and Nutrition, 56, 215–236.
  19. Kaur, B., Ranawana, V., Teh, A. L. & Henry, C. J. 2015. The glycemic potential of white and red rice affected by oil type and time of addition. Journal of Food Science, 80, 2316-2321.
  20. Levent, H., Sayaslan, A. & Yeşil, S. 2021. Physicochemical and sensory quality of gluten‐free cakes supplemented with grape seed, pomegranate seed, poppy seed, flaxseed, and turmeric. Journal of Food Processing and Preservation, 45, e15148.
  21. Li, E., Dhital, S. & Hasjim, J. 2014. Effects of grain milling on starch structures and flour/starch properties. Starch‐Stärke, 66(1-2), 15-27.
  22. Lim, H. S., Park, S. H., Ghafoor, K., Hwang, S. Y. & Park, J. 2011. Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea. Food Chemistry, 124(4), 1577-1582.
  23. Madkor, H. R., Mansour, S. W. & Ramadan, G. 2011. Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin–nicotinamide diabetic rats. British Journal of Nutrition, 105(8), 1210-1217.
  24. Mishra, S. & Monro, J. A. 2009. Digestibility of starch fractions in wholegrain rolled oats. Journal of Cereal Science, 50(1), 61-66.
  25. Oba, S., Nanri, A., Kurotani, K., Goto, A., Kato, M., Mizoue, T., Noda, M., Inoue, M. & Tsugane, S. 2013. Dietary glycemic index, glycemic load and incidence of type 2 diabetes in Japanese men and women: The Japan public health center-based prospective study. Nutrition Journal, 12(1), 165-174.
  26. Quek, R. & Henry, C. J. 2015. Influence of polyphenols from lingonberry, cranberry, and red grape on in vitro digestibility of rice. International Journal of Food Sciences and Nutrition, 66(4), 378-382.
  27. Rathna Priya, T. S., Nelson, A. R. L. E., Ravichandran, K. & Antony, U. 2019. Nutritional and functional properties of coloured rice varieties of south India: A review. Journal of Ethnic Foods, 6, 11.
  28. Scalbert, A., Johnson, I. T. & Saltmarsh, M. 2005. Polyphenols: Antioxidants and beyond. The American Journal of Clinical Nutrition, 81, 215S–7S.
  29. Seidelmann, S. B., Claggett, B., Cheng, S., Henglin, M., Shah, A., Steffen, L. M., Folsom, A. R., Rimm, E. B., Willett, W. C. & Solomon, S. D. 2018. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. The Lancet Public Health, 3(9), e419-e428.
  30. Świeca, M., Dziki, D. & Gawlik-Dziki, U. 2017. Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour. Food Chemistry, 228, 643-648.
  31. Wee, M. S. & Henry, C. J. 2020. Reducing the glycemic impact of carbohydrates on foods and meals: Strategies for the food industry and consumers with special focus on asia. Comprehensive Reviews in Food Science and Food Safety, 19(2), 670-702.
  32. Wongsa, P., Chaiwarit, J. & Zamaludien, A. 2012. In vitro screening of phenolic compounds, potential inhibition against α-amylase and α-glucosidase of culinary herbs in Thailand. Food Chemistry, 131(3), 964-971.
  33. Vinoy, S., Meynier, A., Goux, A., Jourdan-Salloum, N., Normand, S., Rabasa-Lhoret, R., Brack, O., Nazare, J., Péronnet, F. & Laville, M. 2017. The effect of a breakfast rich in slowly digestible starch on glucose metabolism: A statistical meta-analysis of randomized controlled trials. Nutrients, 9(4), 318.
  34. Yilmazer-Musa, M., Michels, A. J., Schneider, E. & Frei. B. 2012. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α -amylase and α -glucosidase activity. Journal of Agricultural and Food Chemistry, 60(36), 8924-8929.
  35. Zhang, T., Li, X., Chen, L. & Situ, W. 2016. Digestibility and structural changes of waxy rice starch during the fermentation process for waxy rice vinasse. Food Hydrocolloids, 57, 38-45.