Influence of Ultraviolet-C Radiation on Biochemical Compositions and Genetics of Capsicum Plants

Somashekara Rajashekara; S. S. Khanum; M. Shanthala; K. R. Mallika; Sunita Adaki.

Transactions on Science and Technology, 8(2), 91 - 103.

Back to main issue

ABSTRACT
Chilli or Pepper (Capsicum species) is an essential and critical plant shown as vegetable cum spice crop grown for the ornamental, medicinal and pharmaceutical applications. The present paper aimed to understand the relative changes in biochemical composition of the plants because of impacts of the induced mutation and amplified fragment length polymorphism (AFLP) investigation can be utilized to assess the alteration in the DNA structure. Minimum amount of proteins (799.997 µg/ml), carbohydrates (39.13 µg/ml) and free fatty acids (673.2 µg/ml) were found in very high intervening mutated plants. Maximum percentage of inhibition by the peroxidase activity (0.1685 μg/ml), catalase activity (0.078 μg/ml), diphenyl-1-picrylhydrazyl (79.44±1.61 μg/ml) activity and 2, 2’- azino-bis (3-ethylbenzoithioazoline-6-sulphonic acid) (97.02±0.45 μg/ml) activities were found in profoundly exposed mutated plants compared to the normal Capsicum plant species. A dendrogram representing the similarity in DNA bands of Capsicum plants in different time intervals of UV-C radiations showed significant negative affinities. This study encourages us in understanding an induced mutation by UV-radiation on the Chilli plant leaves and its impact on plant cell creation and DNA structure. Therefore, this study brings mutation prompts diverse sorts of basic variations from the norm in cell organelles and its structure of the plant sources.

KEYWORDS: ABTS assay, Catalase activity, DPPH assay, Peroxidase activity, Ultraviolet radiations..



Download this PDF file

REFERENCES
  1. Aruldoss, T. & Mullainathan, L. 2015. Effect of Gamma Rays and EMS on Phytochemical Constituents in Chilli (Capsicum annuum L). Var- K1 on M2 Generation. International Journal of Pharmacy and Pharmaceutical Research, 4(3), 92-101.
  2. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601-639.
  3. Blears, M. J., Grandis, S. A., Lee, H. & Trevors, J. T. 1998. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. Journal of Industrial Microbiology and Biotechnology, 21, 99-114.
  4. Brand-Williams, W., Cuvelier, M. E. & Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Journal of Food Science and Technology, 28, 25–30.
  5. Coohill, T. P. 1989. Ultraviolet action spectra (280 nm to 380 nm) and solar effectiveness spectra for higher plants. Journal of Photochemistry and Photobiology B: Biology, 50, 451-457.
  6. Costa, L., Vicente A. R., Civello, P. M., Chaves, A. R. & Martínez, G. A. 2006. UV-C treatment delays postharvest senescence in broccoli florets. Postharvest Biology and Technology, 39, 204-210.
  7. Cox, H. E. & Pearson, D. 1962. The Chemical Analysis of Foods. Chemical Publishing Company Inc., New York, 420.
  8. Gaspar, T. H., Penel, C., Hagega, D. & Greppin, H. 1991. Peroxidases in plant growth, differentiation and development processes. In: Lobarzewski, J., Gneppin, H., Penel, C. & Gaspar, T. H. (ed.), Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. University de Geneve, Switzerland, 249-250.
  9. González-Aguilar, G., Zavaleta-Gatica, R. & Tiznado-Hernández, M. E. 2007. Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biology and Technology, 45, 108-116.
  10. Hammer, O., Harper, D. A. T. & Ryan, P. D. 2001. PAST: Palaeontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 1-9.
  11. Hazra, P., Chattopadhyay, A., Karmakar, K. & Dutta, S. 2011. Modern technology in vegetable production. New India Publishing Agency, New Delhi, India, 478.
  12. Hollosy, F. 2002. Effects of ultraviolet radiation on plant cells. Micron, 33, 179-197.
  13. Ince, A. G., Karaca, M. & Onus. 2009. Development and utilization of diagnostic DAMD-PCR markers for Capsicum accessions. Genetic Resources and Crop Evolution, 56, 211-221.
  14. Ince, A. G., Karaca, M. & Onus. 2010. CAPS-microsatellites: use of CAPS method to convert non-polymorphic microsatellites into useful markers. Molecular Breeding, 25, 491–499.
  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J., 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265.
  16. Luck, H. 1974. Methods in Enzymatic Analysis, 2, Bergmeyer (ed.), Academic press, New York, 885.
  17. Mahdavian, K., Ghorbanli, M. & Kalantari, K. M. 2008. The Effects of Ultraviolet Radiation on the Contents of Chlorophyll, Flavonoid, Anthocyanin and Proline in Capsicum annum L. Turkistan Journal of Botany, 32, 25-33.
  18. Malik, C. P. & Singh, M. B. 1980. Plant Enzymology and Histoenzymology. Kalyani Publishers, New Delhi, 53.
  19. Miller, G. L. 1972. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.
  20. Onus, A. N. & Pickersgill, B. 2004. Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution. Annals of Botany, 94, 289-295.
  21. Sarghein, S. H., Carapetian, J. & Khara, J. 2011. The effects of UV radiation on some structural and ultrastructural parameters in pepper (Capsicum longum A. DC.). Turkistan Journal of Biology, 35, 69-77.
  22. Vicente, A. R., Pinedac, C., Lemoinea, L., Civello, P. M., Martinez, G. A. & Chaves, A. R. 2005. UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biology and Technology, 35, 69–78.
  23. Vats, S. 2012. Antioxidant Activity of Callus Culture of Vigna unguiculata (L.) Walp. Researcher, 4(6), 22-24.
  24. Witayapan, N., Sombat, C. & Siriporn, O. 2007. Antioxidant and antimicrobial activities of Hyptis suaveolens essential oil. Scientia Pharmaceutica, 75, 35–46.