Properties of Cultivated Soil from Mesilou-Kundasang Agricultural Area

Sahibin Abd Rahim, Ivy Johviany John, Diana Demiyah Mohd Hamdan, Nur Zaida Zahari, Baba Musta.

Transactions on Science and Technology, 7(4), 219 - 224.

Back to main issue

Assessment on the physico-chemical properties of ultrabasic soil from Mibang, Ranau for agricultural suitability was carried out. Physico-chemical parameters investigated includes soil pH, electrical conductivity (EC), cation exchange capacity (CEC), available macronutrients, heavy metals, organic matter and particle size separates. These parameters were evaluated for their suitability for rice crops by comparing with the MARDI standard. This assessment is necessary to enlighten whether this type of soil is suitable for cultivation. The results showed pH, electrical conductivity and organic matter content were within the suitable range for agriculture, cation exchange capacity was below the suitable value and the heavy metals Ni, Cr and Co were above the maximum allowable concentration (MAC) which is not suitable for agriculture. Whilst some physico-chemical properties of soil can be considered suitable for agriculture, the high amount of heavy metals rendered the soil unsuitable for paddy plant cultivation.

KEYWORDS: Ultrabasic soil; Soil suitability for paddy; Physico-chemical properties; Heavy metals; Maximum allowable concentration.

Download this PDF file

  1. Abdulla, H. H. 1966. A study on the development of podzol profile in Dovey Forest. PhD Thesis. University of Wales, United Kingdom.
  2. Acres, B. D., Bower, R. P., Burroughs, P. A., Folland, C.J., Kalsi, M. S., Thomas, P. & Wright, P. S. 1975. Land Resource Study. Land Resource Division, Ministry of Overseas Development, Surrey.
  3. Avery, B. W. & Bascomb, C. L. 1982. Soil survey laboratory methods. Harpenden: Soil Survey of Great Britain (England and Wales), UK.
  4. Burt, R., Fillmore, M., Wilson, M., Gross, E., Langridge, R. & Lammers, D. 2001. Soil properties of selected pedons on ultramafic rocks in Klamath Mountains, Oregon. Communications in Soil Science and Plant Analysis, 32(2001), 2145-2175
  5. Chaoua, S., Boussa, S., Gharmali, A. E. & Boumezzough, A. 2019. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morroco.Journal of Saudi Society of Agricultural Sciences, 18(4), 429 - 436.
  6. Kabata-Pendias, A. 2011. Trace Elements in Soils and Plants (4th edn.). CRC Press, Boca Raton.
  7. Landon, J. R. 1991. Booker Tropical Soil Manual (A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics). Routledge, London.
  8. Massey, D. M. & Winsor, G. W. 1968. Soil salinity studies. II. The relation of plant growth to salinity in soil and soil mixtures of differing physical properties. Journal of the Science of Food and Agriculture, 19, 332 - 338.
  9. Mattigod, S.V. & Page, A.L. 1983. Assessment of metal pollution in soils. In: Thornton, I. (ed.). Applied Environmental Geochemistry. London: Academic Press.
  10. Mclean, E. O. 1965. Aluminium in Methods of Soil Analysis. Maddison, Winconsin: America Science Agronomy.
  11. Metson, A.J. 1956. Methods of Chemical Analysis for Soil Survey Samples. New Zealand Soil Bureau 12.
  12. Proctor, J. 1992. The vegetation over ultramafic rocks in the tropical far east. In: Roberts B.A. & Proctor, J. (eds). The Ecology of Areas with Serpentinized Rocks. A world view. Kluwer Academic Publishers.
  13. Roslaili, A. A., Sahibin, A. R., Ismail, S. & Wan, M. I. 2015. Speciation and Availability of Heavy Metals On Serpentinized Paddy Soil and Paddy Tissue. Procedia - Social and Behavioral Sciences, 195, 1658 - 1665.
  14. Rowell, D. L. 1994. Soil science: Methods & Applications. Harlow, Essex: Longman Scientific & Technical, Longman Group UK Ltd.
  15. Sahibin, A. R., Idris, W. M. R. I., Ismail, B.S., Gasim, M. B., Omar, R., Rahman, Z. A., Musta, B. & Md. Tan, M. 2008. Composition and Distribution Patterns of Major and Trace Elements in Gradually Weathered Andesite Rock from FELDA Jengka 4, Pahang, Malaysia. Malaysian Journal of Science, 27(1), 153-162.
  16. Sahibin, A. R., Idris, W. M. R. I., Rahman, Z. A., Lihan, T., Omar, R. & Liew, K. Y. 2012. Heavy Metal Content in Selected Flavouring Plants and in Ultrabasic Soil of Felda Rokan Barat, Negeri Sembilan, Malaysia. Sains Malaysiana, 41(1), 11 - 21.
  17. Sahibin, A. R., Mohd Hamdan , D. D. & Musta, B. 2019. Heavy metals content in ultrabasic soil and plant around Ranau Sport Complex, Sabah, Malaysia. Warta Geologi, 45(3), 276.
  18. Sariam, O. 2008. Pembajaan asas dan tambahan. In: Omar, O., Daud, A. H., Ismail, A., Abd. Hamid, A., Abd. Razak, A., Man, A., Amzah, B., Mohamad Saad, M., Harun, M., Abdullah, S., Othman, S., Misman, S. N., Suhaimi, S. & Hussain, Y. (Eds). Manual Teknologi Penanaman Padi Lestari. Serdang, Selangor : Institut Penyelidikan dan Kemajuan Pertanian Malaysia.
  19. Singh, A., Sharma, R. K., Agrawal, M. & Marshall, F. 2009. Effects of wastewater irrigation on physicochemical properties of soil and availability of heavy metals in soil and vegetables. Communication in Soil Science Plant Analysis, 40(20-22), 3469 - 3490.
  20. Tashakor, M., Wan Yaacob, W. Z. & Mohamad, H. 2014. Geochemical Characteristics of Serpentinite Soils from Malaysia. Malaysian Journal of Soil Science, 18, 35-49.
  21. United States Environmental Protection Agency (US EPA). 1996. “Method 3050B: Acid Digestion of Sediments, Sludges, and Soils,” Revision 2. US EPA, Washington.
  22. Yap, D. W., Adezrian, J., Khairiah, J., Ismail, B. S. & Ahmad-Mahir, R. 2009. The Uptake of Heavy Metals by Paddy Plants (Oryzasativa) in Kota Marudu, Sabah, Malaysia. American-Eurasian Journal of Agricultural & Environmental Sciences, 6(1), 16 - 19.