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ABSTRACT Due to a large-scale problem, solving unconstrained optimization using classical Newton’s method is typically 
expensive to store its Hessian matrix and solve its Newton direction. Therefore, in this paper, we proposed a Newton-
MSOR method for solving large scale unconstrained optimization problems whose Hessian matrix is an arrowhead matrix 
to overcome these problems. This Newton-MSOR method is a combination of the Newton method and modified 
successive-over relaxation (MSOR) iterative method. Some test functions are provided to show the validity and 
applicability of the proposed method. In order to calculate the performance of the proposed method, combinations between 
the Newton method with Gauss-Seidel point iterative method and the Newton method with successive-over relaxation 
(SOR) point iterative method were used as reference methods. Finally, the numerical results show that our proposed 
method provides results that are more efficient compared to the reference methods in terms of execution time and a 
number of iterations. 
 
KEYWORDS: Newton method; MSOR iteration; Unconstrained optimization problems; Large-scale optimization; Iterative 
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INTRODUCTION 

In this paper we only interested in large-scale problems (n ≥ 1000), therefore we study a large-

scale unconstrained optimization problem which specified as   

  x
x

f
n

min  (1) 

where nf :  is twice continuously differentiable. Generally, problem (1) can be solved using 

various type of method such as stated in Sun & Yuan (2006). Through the list of techniques 

discussed by them, we are more attracted to Newton's method. Since Newton’s method possesses a 

fast quadratic rate of convergence, and it is also known as the best-known method on its outstanding 

performance when the starting point is choosing appropriately (Nocedal & Wright, 2000). Despite 

these reasons, notice that Newton’s method has disadvantages when the problem is in the large-

scale which is lead to difficulties in finding its second derivatives. Therefore many researchers have 

modified Newton's method to overcome the disadvantages such as proposed by Kaniel & Dax 

(1979), Shi (2000), Grapsa (2014) and Dehghan Niri et al. (2018). 

 

Kaniel & Dax (1979) proposed a modified Newton’s method for unconstrained minimization 

through the use of the symmetric decomposition as an alternative method for searching the Newton 

direction in solving the classical Newton method, while Shi (2000) combining the Newton direction 

with the steepest descent direction to achieve global and high local convergence order. Also, Grapsa 

(2014) proposed a new class of modified Newton’s direction methods using a proper gradient’s 

vector modification to have an efficient quadratic model with a new direction for solving problems 

of unconstrained optimization. Dehghan Niri et al. (2018) proposed a modified regularized Newton 

method for solving unconstrained optimization problems whose Hessian matrix may be singular 

without line search and analyze its convergence.  



 

T
R

A
N

S
A

C
T

IO
N

S
 O

N
 S

C
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 
Ghazali  et al., 2019. Transactions on Science and Technology. 6(2-2), 228 - 234                                                             229 

Science and Natural Resources 2019 

Thus, in this paper, we proposed an alternative method for finding large-scale unconstrained 

optimization problems with an arrowhead Hessian matrix by combining the Newton method with 

MSOR point iterative method, namely as Newton-MSOR method. This combination uses the MSOR 

iterative method for finding the Newton direction, while Newton’s method is used to estimate the 

solution of problem (1). Kincaid and Young (1972) who are responsible for introducing the MSOR 

iterative method using two different relaxation factors to produce the fastest convergence which 

categorized as one of the numerical techniques that have an advantage of the efficient point iteration 

for solving any linear systems including large-scale system. To analyze the performance of our 

proposed method, we consider a combination of Newton method with SOR iteration and Newton 

method with Gauss-Seidel iteration as reference methods and they are called as Newton-SOR 

method and Newton-GS method respectively. 

 

 

NEWTON SCHEME WITH AN ARROWHEAD HESSIAN MATRIX 

In this paper, we start by using the quadratic Taylor approximation to  xf  around the current 

point 
 k
x , and then we minimize this approximation to have the next point 

 1k
x . Therefore we 

replace problem (1) as 

 
                  . 

2

1
min 2 kkTkkTkk

fff
n

xxxxxxxxx
x




 (2) 

To solve problem (2), we set the gradient of this approximation to zero, so that we can have 

 
           , 0

1


 kkkk
f xxxHx  (3) 

where 
     kk

f xxH
2  as the Hessian matrix of second partial derivatives of  xf . By 

simplifying equation (3), we can obtain the Newton iteration; 

 
          , 11 kkkk

f xxHxx 


 (4) 

with its Newton direction; 

 
        . 1 kkk

fd xxH 


 (5) 

As a particularly interesting case, we only considered Hessian of an arrowhead matrix of order 

n with the general form given by Stanimirovic et al. (2019); 
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FORMULATION OF THE PROPOSED ITERATIVE METHOD 

Since the Hessian of an arrowhead matrix, 
  kxH  is large and sparse, therefore finding the 

inverse of 
  kxH  by using direct method can cause a great computational cost that will lead to a 

solution involving very tedious work. As another solution, we used an iterative method as in Young 

(1971) and Youssef and Taha (2013) for solving a large linear system of equation (5). Let the linear 

system (5) Error! Reference source not found.be rewritten in general form as 
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  fd A  (6) 

where,  
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with 
1 2 2 1 2 1, ..., , ,..., , , ...,n n nb b b a a c c c   . To develop the formulation of our proposed iterative method, 

we decomposed the real coefficient matrix A of the linear system (6) as; 

 ULDA   (7) 

where D is the nonzero diagonal part, L is strictly lower triangular part and U is strictly upper part, 

of A. By applying the decomposition in equation (7) into linear system (6) and considering the 

implementation of two different relaxation parameters, the iterative formulation of the MSOR 

method can be stated in vector form as (Kincaid & Young, 1972); 

 

          
1 11

1 1 1 1 1 11 ,   1,3,..., 1
k k

i i i
d d f i n    

 

        D L U D D L
 

          
1 11

1 2 2 2 2 21 ,   2,4,...,
k k

i i i
d d f i n    

 

       D L U D D L  
(8) 

where ω1 and ω2 represent as a relaxation parameter with the optimal value in the range of  [1,2) and 

selected based on the smallest number of inner iterations. For the implementation of point iterations, 

each component  1k

id  can be computed as; 

 

       
1

1 1
1 1 1

1

1 ,  for 1
n

k k k

i i i j i

i

d d f c d i
b







 

 
     

 
  

        1 1
1 1 11 ,   for 3,5,..., 1

k k k

i i i i

i

d d f a d i n
b






       

        1 2
2 1 11 ,  for 2,4,...,

k k k

i i i i

i

d d f a d i n
b






      

(9) 

By using the formulation of the MSOR iterative method to calculate the Newton direction (4) in 

Newton equation (5), we proposed the algorithm of Newton-MSOR scheme for solving problem (1). 

Note that for ω1 = ω2 = 1 equation (9) is reduced to the GS method and if ω1 = ω2 ≡ ω, then equation 

(9) is reduced to the SOR method. Therefore, by using equation (6) and (9), we propose the reliable 

algorithm of Newton-MSOR scheme with an arrowhead Hessian matrix for solving problem (1) and 

stated it in Algorithm 1. 

Algorithm 1: Newton-MSOR with an Arrowhead Hessian Matrix Scheme 

i. Initialize 

Set up the objective function:  f x , 
 0 nx  , 

6

1 10  , 
8

2 10   and n  

ii. Assign the optimal value of 1 and 2  

iii. For 1,2,...,j n  implement 

    a. Set 
 0

0d   

    b. Calculate 
  kf x  

    c. Calculate the approximate value of  1k

id


 by solve equation (6) using equation (9) 

    d. Check the convergence test, 
   1

2

k k
d d 


  . If yes, go to step (e). Otherwise, go back to step (b) 

    e. For 1,2,...,i n  calculate; 
     1k k k
x x d


   

 
   f. Check the convergence test, 

   1

k
f x   . If yes, go to (iii). Otherwise, go back to step (a) 

iv. Display approximate solutions 
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NUMERICAL EXPERIMENTS AND COMPUTATIONAL RESULTS 

To check the performance of the proposed Algorithm, we have run the numerical experiments 

using three artificial problems obtained from the collection collected by Andrei (2004; 2008) where 

all of these problems have the same characteristic of Hessian that is an arrowhead Hessian matrix. 

The details for each of the three test functions are stated in Table 1. For each of these test functions, 

we use three different initial points. One of them is as suggested in Andrei (2004; 2008), and we 

labeled it as a standard initial point while the other two initial points are chosen randomly from a 

range surrounding the standard initial point or the optimal point. We specify it as a nonstandard 

initial point 1 and nonstandard initial point 2 in Table 1. Therefore in total, we have nine test cases 

which can be defined by test number. For example, we indicate the test case defined by test number 

1 with a nonstandard initial point 2 as 1(b).  

 

Table 1. Specifications of the test functions. 

Test 

Number 

Test Name, Algebraic Expression, local 

optimal value and optimal point 

Initial point,  0
x  

(a)   Standard 
(b)   Nonstandard 1 

(c)   Nonstandard 2 

1 

 

 

 

 

LIARWHD 

     
2 22

1

1

x 4 1
n

i i

i

f x x x


     

* 0f   and  * 1.0,1.0,...,1.0x   

 4.0,4.0,...,4.0  
 1.5,1.5,...,1.5  

 3.3,3.5,...,3.3,3.5  

2 

 

 

 

 

NONDIA 

     
22 2

1 1

2

x 1 100
n

i i

i

f x x x 



     

* 0f   and  * 1.0,1.0,...,1.0x  

 1.0, 1.0,..., 1.0    
 2.0,2.0,...,2.0

 2.0,1.5,...,2.0,1.5  

3 

 

 

 

 

DIAG-AUP1 

     
2 2

2 2

1

1

x 4 1
n

i i

i

f x x x


     

* 0f   and  * 1.0,1.0,...,1.0x  

 4.0,4.0,...,4.0  
 1.5,1.5,...,1.5

 3.3,3.5,...,3.3,3.5  

 

The computational result of the proposed and references method was compiled using C 

language with double precision arithmetic. For each test cases, we performed five numerical 

experiments with a different order of Hessian matrix as n = {1000, 5000, 10000, 20000, 30000}. We 

report the computational result of the Newton-GS (NGS), Newton-SOR (NSOR), and Newton-MSOR 

(NMSOR) in Table 2. The detailed numerical results, including the number of inner iteration (NIi), the 

number of outer iteration (NIo), the execution time in seconds (t), function value at the iterate where 

execution terminated (FVt) and maximum error (Maxε). All values tabulated in Table 2 are rounded 

up to two decimal places. Therefore, all maximum error values are smaller than the convergence 

tolerance, ε2. Finally, to have well understood for the efficiency of the comparison results in term of 

the execution time, we have computed the comparison of speedup ratio for Newton-MSOR method 

with both the reference methods in Table 3. In this table, we used the total execution time in seconds 

(Ʃt) for every test cases. 

 

 

CONCLUSION 

Base on all the results given in the previous section, we can conclude that in the process for 

solving large-scale unconstrained optimization problems with an arrowhead Hessian matrix, our 

proposed algorithm is efficient compared to the reference methods. This comparison has shown 

through the execution time and the number of iterations given in Table 2. For the accuracy, we can 

observe through all value indicates as the approximate value under column FVt and it is shown that 
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they are very approaching the optimal value except seven values obtained from the references 

method (in the test case 1(c)) and not from the proposed method. Therefore, the selection of an 

excellent initial point can influence the efficiency of the initial search process. As expected, with the 

use of the relaxation factor, the speedup ratio for Newton-MSOR and Newton-SOR were much 

faster than Newton-GS. From the speedup ratio in Table 3, we see that Newton-MSOR is up to 1.93 

times faster than Newton-SOR and up to 358.18 times more rapid than Newton-GS. Thus, it can be 

concluded that our proposed iterative method (Newton-MSOR) can show substantial improvement 

in the number of iterations and execution time compared to the Newton-SOR and Newton-GS point 

iterative methods. In the future, we will investigate the efficiency of the combination of the Newton 

method with block iterative approach as in Ghazali et al. (2018, 2019) and Sulaiman et al. (2012). 

 

Table 2. Computational result of the Newton-GS, Newton-SOR, and Newton-MSOR. 

NGS NSOR N2MSOR NGS NSOR N2MSOR NGS NSOR N2MSOR NGS NSOR N2MSOR NGS NSOR N2MSOR

1000 1567 376 366 38 14 17 0.04 0.01 0.00 2.40E-13 1.47E-14 4.61E-17 9.90E-07 3.16E-07 7.07E-07

5000 2194 408 366 52 17 17 0.38 0.05 0.04 2.35E-13 6.00E-16 1.95E-16 9.72E-07 6.63E-07 5.87E-07

10000 2509 443 405 58 17 17 0.63 0.09 0.08 2.23E-13 1.60E-15 2.44E-16 9.46E-07 4.64E-07 7.10E-08

20000 2821 507 445 63 18 17 1.46 0.19 0.18 2.40E-13 1.00E-15 1.25E-15 9.80E-07 2.31E-07 2.49E-07

30000 2899 549 507 65 21 17 1.95 0.33 0.31 2.45E-13 2.00E-16 6.31E-16 9.91E-07 2.89E-07 9.48E-07

1000 1013 207 189 32 10 10 0.02 0.01 0.00 2.31E-13 2.00E-16 1.24E-16 9.70E-07 6.40E-07 2.54E-07

5000 1039 232 214 46 8 8 0.10 0.03 0.02 2.21E-13 3.33E-14 2.87E-14 9.41E-07 3.66E-07 7.82E-07

10000 1022 232 216 36 10 14 0.19 0.06 0.05 2.48E-13 2.51E-18 4.88E-16 9.97E-07 3.94E-07 4.64E-07

20000 1038 232 213 52 8 8 0.40 0.09 0.08 2.48E-13 1.38E-17 3.66E-15 9.97E-07 6.88E-07 4.89E-07

30000 1042 236 214 58 15 9 0.06 0.16 0.14 2.31E-13 2.78E-15 6.46E-15 9.61E-07 6.97E-07 5.18E-07

1000 3169 761 349 43 34 18 0.05 0.01 0.01 3.73E+00 3.73E+00 1.53E-16 9.40E-07 7.42E-07 1.00E-02

5000 2731 609 374 51 25 15 0.23 0.06 0.04 3.73E+00 3.73E+00 1.66E-15 9.58E-07 6.44E-07 4.00E-02

10000 2394 463 412 57 21 25 0.40 0.10 0.09 2.24E-13 2.57E-18 9.03E-18 9.47E-07 4.61E-07 9.00E-02

20000 2954 709 507 60 15 16 0.99 0.24 0.19 3.73E+00 3.73E+00 1.08E-15 9.68E-07 7.78E-07 9.42E-07

30000 2703 669 530 65 11 22 1.39 0.34 0.31 3.73E+00 1.40E-15 3.67E-16 9.68E-07 4.09E-07 9.91E-07

1000 2296 1079 1028 7528 124 112 1.34 0.03 0.02 2.47E-15 2.40E-18 5.94E-17 1.00E-06 9.72E-07 8.13E-07

5000 52084 1883 1844 21374 225 55 18.95 0.26 0.16 2.47E-15 2.39E-15 1.76E-13 1.00E-06 9.55E-07 3.86E-07

10000 128743 2633 2369 96881 320 179 123.63 0.66 0.53 2.47E-15 1.06E-15 5.29E-15 1.00E-06 6.73E-07 9.64E-07

20000 243256 3308 3184 209658 319 266 518.18 1.58 1.47 2.47E-15 2.67E-15 1.47E-14 1.00E-06 3.12E-07 3.23E-07

30000 351492 4129 3906 326806 669 444 1182.51 3.70 2.97 2.47E-15 7.32E-18 2.70E-15 9.99E-07 8.80E-07 9.47E-07

1000 38789 2762 2711 7536 214 218 1.55 0.07 0.06 2.50E-15 1.12E-17 1.12E-17 9.99E-07 9.81E-07 9.69E-07

5000 168711 7024 6378 45606 526 697 37.86 0.78 0.77 2.50E-15 1.99E-18 3.43E-18 1.00E-06 9.99E-07 9.91E-07

10000 302950 10346 9963 98059 747 787 152.13 2.25 2.23 2.50E-15 1.02E-18 1.09E-18 1.00E-06 9.99E-07 9.97E-07

20000 557276 13809 13774 209806 1444 1582 621.94 6.96 6.84 2.50E-15 5.73E-19 7.14E-19 1.00E-06 9.99E-07 9.94E-07

30000 799141 17081 16872 326742 2134 1936 1194.97 13.28 12.67 2.50E-15 5.49E-19 4.67E-19 9.99E-07 9.97E-07 9.97E-07

1000 38695 2810 2697 7535 110 203 1.18 0.06 0.06 2.50E-15 2.35E-18 1.01E-17 1.00E-06 9.07E-07 9.76E-07

5000 173806 6905 6799 45608 652 779 33.15 0.84 0.85 2.50E-15 2.77E-18 3.77E-18 1.00E-06 9.95E-07 9.93E-07

10000 302014 10175 10167 98058 1231 1203 129.24 2.64 2.61 2.50E-15 2.04E-18 1.97E-18 1.00E-06 9.93E-07 9.97E-07

20000 554369 14569 14416 209808 1769 201 522.01 7.72 6.09 2.50E-15 9.80E-19 3.27E-14 1.00E-06 9.95E-07 4.07E-07

30000 796433 17818 16942 326742 1446 1199 1193.60 11.90 10.79 2.50E-15 3.09E-19 4.65E-19 9.99E-07 9.94E-07 9.96E-07

1000 412 185 167 17 15 14 0.03 0.01 0.00 4.69E-14 4.01E-17 5.27E-17 8.70E-07 6.74E-07 4.94E-07

5000 452 184 168 20 17 14 0.05 0.03 0.02 4.95E-14 4.03E-18 1.40E-17 8.90E-07 4.85E-07 7.00E-07

10000 463 187 168 21 17 14 0.10 0.08 0.04 5.79E-14 1.94E-18 4.98E-18 9.63E-07 4.84E-07 6.87E-07

20000 470 188 168 23 17 14 0.20 0.14 0.08 5.32E-14 1.73E-18 1.63E-18 9.23E-07 6.50E-07 1.17E-07

30000 473 188 169 24 18 15 0.27 0.23 0.13 4.54E-14 4.58E-19 1.68E-19 8.53E-07 4.09E-07 1.94E-07

1000 279 105 92 13 10 9 0.01 0.00 0.00 4.66E-14 1.81E-17 1.75E-16 8.67E-07 4.55E-07 8.64E-07

5000 284 106 92 17 10 10 0.07 0.04 0.02 5.70E-14 6.55E-19 5.74E-18 9.56E-07 6.81E-08 5.70E-07

10000 286 108 93 19 10 11 0.07 0.06 0.04 4.63E-14 1.23E-18 7.71E-18 8.61E-07 1.85E-07 7.98E-08

20000 287 107 93 20 10 11 0.14 0.11 0.05 5.90E-14 2.40E-18 1.46E-17 9.72E-07 4.20E-07 1.28E-07

30000 289 107 93 21 10 11 0.19 0.15 0.08 5.66E-14 3.58E-18 2.15E-17 9.52E-07 6.54E-07 1.76E-07

1000 404 176 162 16 12 12 0.01 0.01 0.00 5.94E-14 4.51E-17 4.18E-17 9.79E-07 7.57E-07 5.00E-07

5000 434 170 158 20 14 14 0.05 0.03 0.02 4.65E-14 5.95E-18 4.66E-18 8.64E-07 6.11E-07 3.74E-07

10000 441 172 156 22 15 14 0.09 0.08 0.04 4.09E-14 9.36E-19 8.32E-18 8.09E-07 3.46E-07 6.82E-07

20000 444 178 157 23 16 16 0.18 0.16 0.08 4.11E-14 9.74E-19 6.38E-18 8.11E-07 4.74E-07 7.53E-07

30000 446 176 157 24 16 16 0.28 0.24 0.13 5.64E-14 3.83E-19 3.30E-18 9.50E-07 3.80E-07 7.27E-07

2(c) 

3(a) 

3(b) 

2(b) 

Test Cases

1(b) 

1(c) 

2(a) 

n
NI i NIo Maxε

1(a) 

t FVt

3(c) 
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Table 3. Comparison of speedup ratio for Newton-MSOR method with Newton-GS method and 

Newton-SOR method. 

NGS                       

(I )

NSOR                       

(II )

NMSOR                       

(III )

1(a) 4.46 0.67 0.61 6.66 7.31 1.10

1(b) 0.77 0.35 0.29 2.20 2.66 1.21

1(c) 3.06 0.75 0.64 4.08 4.78 1.17

2(a) 1844.61 6.23 5.15 296.09 358.18 1.21

2(b) 2008.45 23.34 22.57 86.05 88.99 1.03

2(c) 1879.18 23.16 20.4 81.14 92.12 1.14

3(a) 0.65 0.49 0.27 1.33 2.41 1.81

3(b) 0.48 0.36 0.19 1.33 2.53 1.89

3(c) 0.61 0.52 0.27 1.17 2.26 1.93

Ʃt Speedup ratio

Test Cases  
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