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ABSTRACT: Two-point boundary values problems for certain order of derivatives are cases where only the initial and 
final values are known. These problems were normally solved using systems of ordinary or partial differential equations, 
and have wide applications in modelling of most physical phenomena as well as in economics. Previous investigations 
have shown the implementation of solutions for two-point boundary value problems by using polynomial spline 
approximation scheme. In this paper, non-polynomial spline approximation scheme is used where the general functions 
of cubic non-polynomial spline was employed to discretize the two-point boundary value problems to generate 
approximation equations which yield to its corresponding linear system in matrix form. Successive Over-Relaxation 
(SOR) iterative method was then used to solve the problem together with Gauss-Seidel (GS) as reference to assess the 
performance result of non-polynomial spline approximation scheme in respect of its number of iteration, execution time 
and maximum absolute error when solving the two-point boundary value problems. It was found that SOR iterative 
method has performed better compared to GS for all different grid sizes as shown through the improvement of its 
respective number of iteration, execution time and maximum absolute error. Therefore, SOR iterative method is an 
efficient approach for solving the two-point boundary value problems. 
 
KEYWORDS: Cubic non-polynomial solution; Successive Over Relaxation; Gauss-Seidel; Two-point boundary value 
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INTRODUCTION  

 

Obtaining approximate solutions for two-point boundary value problems play a vital role in 

solving many problems in the field of sciences, economics and engineering. This is due to its 

various applications which including modelling of chemical reactions, modelling of heat transfer 

(Ozisik, 1989) such as in rocket thrust chamber liners and modelling of heat transfer in the fuel 

elements for nuclear reactors. Similar applications can be found in economic including modelling of 

growth theory, capital theory, investment theory, resource economics and labor economics (Goffe, 

1993). As a consequence, many techniques have been initiated by researchers such as EADM 

method (Jang, 2006), shooting method (Sung, 2001) and PTI method by Chen et al. (2006). In 

addition to that, Fang et al. (2002), stated that some of the solutions are finite difference, finite 

element and finite volume. In 2001, Sung introduced a solution known as nonlinear shooting 

method. Other than that, spline approach also one of the solutions which has captured countless 

researchers’ field of exploration in order to solve the two-point boundary problems (Albasiny & 

Hoskin, 1969; Ramadan et al., 2007).  

In this paper, cubic non-polynomial spline functions were used to discretize two-point 

boundary value problems based on spline approximation equations in order to derive cubic non-

polynomial spline approximation equations. Then, these approximation equations yield their own 

corresponding large and sparse linear system. To solve the linear system, various iterative methods 
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have been proposed and discussed by Young (1954, 1971, 1972, 1976), Hackbusch (1995) and Saad 

(1996). From the previous studies of iterations, there exist several families of iterative methods. In 

addition to these iterative methods, the concept of block iteration has also been introduced by 

Evans (1985), and furthermore, explanation of this block iterative concept has been extended by 

Ibrahim and Abdullah (1995), Yousif and Evans (1995), in which these block iterative methods can 

be one of the efficient iterative methods.  
Assuming the advantages of Successive Over-Relaxation (SOR) method (Young, 1954; 1971; 

1972; 1976), this scheme is examined in solving the two-point boundary value problems of the 

cubic non-polynomial spline. Then, for assessment, Gauss-Seidel (GS) iterative method is used as 

reference. 

The two-point boundary problems can be expressed as follows; 

),()(')('' xgyxqyxfy  ],[ bax     (1) 

subject to boundary conditions  

,)( 1Aay   
2)( Aby             (2) 

where
iA , 2,1i  is constant and functions )(xf  and )(xg  are known function with boundary ],[ ba . 

Then, analitical solution for problem (1) is depending on baundary conditions (2) and cannot be 

created with  random selection of functions, )(xf  and )(xg .   

To facilitate us in discretizing problem (1), let the solution domain of the problem be divided 

uniformly. To do this, we can consider any positive integer pm 2 , where 2p  and then let the 

solution domain, ],[ ba  be divided uniformly into m subinterval (Figure 1) in which the length of 

uniformly subintervals, x  is defined as  

,h
m

ab
x 


  1mn .                  (3) 

Therefore, the grid points in the solution domain  b,a  are labeled as the 

numbers miihaxi ,,2,1,0,  .  Then, the values of the function  xy  at the grid points are 

denoted as  ii xyy  . Formulation and implementation of GS and SOR iterative methods have 

been conducted by using interior grid points until the test of convergence rate can be satisfied. 

 

 
 

Figure 1. Distribution of node point for domain solution m=8 

 

 

CUBIC NON-POLYNOMIAL SPLINE APPROXIMATION EQUATION 

 

 To construct a cubic non-polynomial spline approximation equation, firstly, problem (1) needs 

to be discretized by using the cubic non-polynomial spline scheme. To do this, let )(xy  be the 

exact solution of problem (1) and iS  be non-polynomial spline approximation to  ii xyy   acquire 

by the segments of  xQi
 are passing through to the points  ii Sx ,  and  11,  ii Sx . Then the non-

polynomial spline approximation in general form can be considered as 

      nixxxxQxS iii ,,2,1,0,,, 1      (4)
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Let us consider the cubic non-polynomial spline from the equation (4) in  xQi  
 general form be 

defined as 

  iiiiiiii dxxcxxkbxxkaxQ  )()(sin)(cos   (5) 

for ni ,,2,1,0   where iii cba ,, and id  are constant, and k is the frequency for the trigonometric 

function and the equation (5) is known as the general form of cubic non-polynomial spline when  

0k  (Saudi & Sulaiman, 2009). 

 

 
Figure 2.  Illustration of cubic non-polynomial spline function for the domain solution 8m  

By referring to Figure 2, in order to formulate the approximation of cubic non-polynomial 

spline equation, discretization process is very important to be done first as previously discussed. 

This paper presents the approximation of problem (1) through the discretization of cubic non-

polynomial spline. Assume that iy  is an accurate solution obtained from many segment of spline 

function that passing through point )( ii yx and ,1( ix ),1iy  then, in order to obtain the expression of 

constant variables for equation (5) in form of ,1, ii yy
,,,1, iii SDD  1iS , the functions have to be 

defined as iii yxQ )( , 11)(   iii yxQ , iii DxQ )(' , 11)('   iii DxQ , iii SxQ )(" , 11)("   iii SxQ . 

By doing several algebraic manipulation via the substitution technique, the expressions of 

constants, iii cba ,, and id  were obtained as ,
)sin(

)cos(
2

12



ii
i

SS
ha


   ,

2

2



i
i

S
hb   

,
)(

2

11



iiii
i

SS
h

h

yy
c





   

2

2



i
ii

S
hyd   where kh and .,..,2,1,0 Ni   

Then, after all points iii cba ,, and id  which passing through point )( ii yx were obtained, let us 

consider the following condition )(1 xQm

i
= )(xQm

i
 where 1,0m by solving this part simultaneously, 

we can get the following cubic non-polynomial spline approximation equation as  

0)
1

sin

1
(2)

sin

cos1
(22)

1

sin

1
(

2

2
12

2

21
2

1  





iiiiii ShyShyShy  (6) 

Again, equation (6) can be simplified as  

0][2 11
2

11   iiiiii SSShyyy     (7) 

where ],
1

sin

1
[

2
   ]

sin

cos1
[

2 




   and .,..,1 Ni    

The equation of central finite difference, backward finite difference and forward finite difference 

as 
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,11111 '   iiiiii gyqyfS  ,' iiiiii gyqyfS   ,111111 '   iiiiii gyqyfS        (8) 

where ,
2

' 11

h

yy
y ii

i
 

  ,
2

34
' 11

1
h

yyy
y iii

i





  

h

yyy
y iii

i
2

43
' 11

1





  

By substituting equation (8) into equation (7), the cubic non-polynomial spline approximation can 

be expressed as  

,11 iiiiiii Fycybya    ni ,...,2,1    (9) 

where 

h

p

h

p
q

h

p
a ii

i
i

i
222

3 1
1

1
0




 







 ,  

h

p
q

h

p
b i

i
i

i
11

0

22
2     









 


1

11
0

2

3

22
i

iii
i q

h

p

h

p

h

p
c ,  11

2
  iiii f

h
ffF  

,2
1h  ,2 2

2h  ,sin1   .cossin2    

Then equation (9) can be used to construct a system of linear equations in matrix form as  

FyA                     (10) 

where 

 

 nnn

nnn

bna

cba

cba

cba

cb

A

































1

111

333

222

11

 ,  

 Tnn yyyyyy 1321 


  ,   1132011 


 nnnn ycFFFFyaFF  . 

 

 

DERIVATION OF SOR METHOD 

 

As mentioned that the SOR iterative method is categorized as a family of point iterative 

methods. This iterative method was introduced by Young (1954, 1971, 1972, 1976) to accelerate the 

convergence rate of Gauss-Seidel (GS) iterative method. To derive the formulation for SOR 

iterative method, let the coefficient matrix, A in equation (10) be decomposed as 

ULDA       (11) 

where L, D and T are lower triangular, diagonal and upper triangular  matrices respectively. By 

imposing the decomposition in equation (11) into equation (10), the formulation of SOR iterative 

methods can be stated as 

 
~

)(

~

1)(

~

)1(

~

)()1( FyULDyy
kkk

 

     (12) 

whereas, GS method is formulated as follows 

FDLyULDy
k 1

~

1)1(

~

)()( 

            (13) 

To accelerate the convergence rate of this method, a good choice for the value of the parameter ω 

must be determined.  In practice, the optimal value of ω in range 21   can be obtained by 

implementing several computer programs and then the best approximate value of ω is chosen in 
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which its number of iterations is the smallest. As taking, 1 , the SOR iterative method can be 

reduced to GS iterative method. In this study, the GS iterative method is assigned to be used as 

control methods. Therefore, the general algorithm for the SOR iterative method in equation (12) 

would be described in Algorithm 1. 

 

Algorithm 1 : SOR scheme  

i. Initialize 
  100 10,0  iU   

ii. Assign the optimal value of ω  

iii. Calculate 
 1k
iU  using 







  

~

)(

~

1)(

~

)1(

~
)()1( FSULDSS

kkk   

iv. Check the convergence test, 
    101 10  k

i
k

i UU
. If yes, go to step (v). Otherwise go back to 

step (iii). 

v. Display approximate solutions. 

 

 

NUMERICAL PERFORMANCE ANALYSIS  
 

In order to investigate the performance analysis of the cubic non-polynomial spline 

approximation equation by using the two proposed iterative methods, there are three criteria can 

be used to compare with GS method. The following three criteria are the number of iterations, time 

of iterations and maximum absolute error. Numerical test for following equation 

),1cosh(44''  yy  ]1,0[x      (14) 

which is the exact solution for problem (14) is given as )1cosh()12cosh()(  xxy . Then, the 

results for the performance analysis have been tabulated in Table 1. 

 
Table 1. Numerical results of the performance assessment 

Number of Iterations 

m 128 256 512 1024 2048 

GS 

SOR 

18173 66139 238353 848604 2975185 

382 723 1438 4097 5367 

Improvement (%) 97.90 99.18 99.40 99.52 99.82 

Time of Iterations (Second) 

GS 

SOR 

16.4300 47.1800 169.3099 881.0900 3747.6400 

0.8700 1.6500 2.400 5.6800 7.7200 

Improvement (%) 94.70 96.50 98.58 99.36 99.79 

Maximum Absolute Error 

GS 

SOR 

9.5665e-06 1.9487e-06 1.2847e-06 7.4088e-06 3.0203e-05 

9.6849e-06 2.4225e-06 6.0855e-07 1.5644e-07 2.6459e-08 

Improvement (%) 1.24 24.31 52.63 97.89 99.91 
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CONCLUSION 

 

In this paper, the cubic non-polynomial spline approximation has been derived based on the 

cubic non-polynomial spline general function and its performance in term of number of iterations, 

time of iterations and maximum absolute error has been obtained by considering the two-point 

boundary value problems together with its exact solution and solved iteratively by using SOR and 

GS iterative methods. Then, the numerical performance analysis result has shown that SOR 

iterative method is superior compared to GS iterative method for different grid sizes (128, 256, 512, 

1024, 2048) and can be seen through the improvement of its respective number of iteration 

(97.90%, 99.18%, 99.40%, 99.52%, 99.82%), execution time (94.70%, 96.50%, 98.58%, 99.36%, 99.79%) 

and maximum absolute error (1.24%, 24.31%, 52.63%, 97.89%, 99.91%). Thus, it can be concluded 

that the cubic non-polynomial spline approximation approach is best solved by using SOR 

iterative method compared to GS iterative method. 
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