Transactions on Science
and Technology,
3(2-2),
374 - 381, 2016 ISSN: 2289-8786 |
Gene Expression in the Biosynthesis of Paralytic Shellfish Poisoning (PSP) Toxins in Dinoflagellates: A Mini Review Adrianne Suk Wai Leong, Ann Anton, Kenneth Francis Rodrigues, Grace Joy Wei Lie Chin |
ABSTRACT Some dinoflagellates are known to synthesize saxitoxin (STX), a potent neurotoxin that causes severe paralytic shellfish poisoning (PSP). In addition, several freshwater species of cyanobacteria also synthesize the same toxin with the same biosynthetic pathway and genes responsible. This review focuses on the gene expression involved in the biosynthesis pathway of PSP toxins in dinoflagellates. The expression of the PSP biosynthetic genes have been identified in certain cyanobacteria and the dinoflagellate Alexandrium sp. with eight genes involved viz. sxtA, sxtB, sxtD, sxtG, sxtH/T, sxtI, sxtS and sxtU. sxtA, a unique starting gene, and sxtG, the second “core” gene appearing in the biosynthesis of PSP toxins are found in both cyanobacteria and Alexandrium sp. Three theories have been proposed to explain the origin of PSP toxin in dinoflagellates: I) the genes are produced by bacteria associated with the dinoflagellates, II) independent evolution III) horizontal gene transfer between cyanobacteria and dinoflagellates. Useful information regarding the expression and function of genes involved in the STX biosynthesis pathway provides an understanding of toxin production and possible mitigation and public health management of STX poisoning. Keywords: Paralytic shellfish toxins; harmful algal blooms; dinoflagellates; transcriptome genes; saxitoxin biosynthesis Full Text PDF © Transactions on Science and Technology 2016
References
[1]
Chang, F., Anderson, D. M., Kulis, D. M. &
Till, D. G. (1997). Toxin production of
Alexandrium minutum (Dinophyceae) from the Bay of Plenty, New
Zealand. Toxicon,
35, 393-409.
[2]
Chen, L., Zhang, H., Finiguerra, M., Bobkov, Y.,
Bouchard, C., Avery, D. E., Anderson, P. A. V., Lin, S. & Dam,
H. G. (2015). A novel mutation from gene splicing of a
voltage-gated sodium channel in a marine copepod and its
potential effect on channel function.
Journal of Experimental Marine Biology and Ecology,
469, 131-142.
[3] Doucette, G. J. (1995). Interactions between
bacteria and harmful algae: a review.
Natural Toxins,
3, 65-74.
[4] Faber, S. (2012). Saxitoxin and the induction of
paralytic shellfish poisoning.
Journal of Young
Investigators, 23,
1-7.
[5] Gallacher, S., Flynn, K. J., Franco, J. M.,
Brueggemann, E. E. & Hines, H. B. (1997). Evidence for
production of paralytic shellfish toxins by bacteria associated
with Alexandrium spp.
(Dinophyta) in culture.
Applied and Environmental Microbiology,
63(1), 239-245.
[6] Hackett, J. D., Wisecaver, J. H., Brosnahan, M. L.,
Kulis, D. M., Anderson, D. M., Bhattacharya, D., Plumley, F. G.
& Erdner, D. L. (2013). Evolution of saxitoxin synthesis in
cyanobacteria and dinoflagellates.
Molecular Biology
Evolution, 30(1),
70-78.
[7]
Hansen, G., Daugbjerg, N. & Franco, J. M. (2003).
Morphology, toxin composition and LSU rDNA phylogeny of
Alexandrium minutum
(Dinophyceae) from Denmark, with some morphological observations
on other European strains.
Harmful Algae, 2,
317-335.
[8]
Hii, K. S., Lim, P. T., Kon, N. F., Takata, Y., Usup, G.
& Leaw, C. P. (2016). Physiological andtranscriptional responses
to inorganic nutrition in a tropical Pacific strain of
Alexandrium minutum:
Implications for the saxitoxin genes and toxin production.
Harmful Algae,
56, 9-21.
[9] Hold,
G. L., Smith, E. A., Birkbeck, T. H. & Gallacher, S. (2001).
Comparison of paralytic shellfish toxin (PST) production by the
dinoflagellates Alexandrium lusitanicum NEPCC 253 and
Alexandrium tamarense NEPCC 407 in the presence and absence
of bacteria. FEMS Microbiology Ecology,
36, 223-234.
[10] Humpage, A. R.,
Rositano, J., Bretag, A., Brown, R. Baker, P., Nicholson, B. C.
& Steffensen, D. A. (1994). Paralytic shellfish poisons from
Australian blue-green algal (cyanobacteria) blooms.
Australian Journal of
Marine and Freshwater Research,
45, 761-771.
[11] John, U.,
Litaker, R. W., Montresor, M., Murray, S., Brosnahan, M. L. &
Anderson, D. M. (2014) Formal revision of the
Alexandrium tamarense
species complex (Dinophyceae) taxonomy: the introduction of five
species with emphasis on molecular-based (rDNA) classification.
Protist,
165(6), 779-804.
[12] Kellmann, R.,
Mihali, T. K., Jeon, Y. J., Pickford, R., Pomati, F. & Neilan,
B. A. (2008). Biosynthetic intermediate analysis and functional
homology reveal a saxitoxin gene cluster in cyanobacteria.
Applied Environmental Microbiology,
74(13),
4044-4053.
[13] Lagos, N.,
Onodera, H., Zagatto, P. A., Andrinolo, D., Azevedo, S. M. F. Q.
& Oshima, Y. (1999). The first evidence of paralytic shellfish
toxins in the freshwater cyanobacterium
Cylindrospermopsis
raciborskii, isolated from Brazil.
Toxicon, 37, 1359-1373.
[14] Lin, S. J. (2011). Genomic understanding of dinoflagellates.
Research in Microbiology,
162(6): 551-569.
[15] Morozova, O. & Marra, M. A. (2008). Applications of
next-generation sequencing technologies in functional genomics.
Genomics,
92, 255-264.
[16] Murray, S. A., Wiese, M., Stuken, A., Brett, S., Kellmann, R.,
Hallegraeff, G. & Neilan, B. A. (2011). SxtA-based quantitative
molecular assay to identify saxitoxin-producing harmful algal
blooms in marine waters.
Applied and Environmental Microbiology,
77(19), 7050-7057
[17] Onodera, H., Satake, M., Oshima, Y., Yasumoto, T. & Carmichael,
W.W. (1997). New saxitoxin analogues from the freshwater
filamentous cyanobacterium
Lyngbya wollei.
Natural Toxins, 5, 146-151.
[18] Organization for the prohibitation of chemical weapons (OPCW)
(2008). Toxins
(https://www.opcw.org/protection/types-of-chemical-agent/toxins/).
Accesssed on 8 August 2016.
[19] Orr, R. J. S.,
Stuken, A., Murray, S. A. & Jakobsen, K. S. (2013). Evolutionary
acquisition and loss of saxitoxin biosynthesis in
dinoflagellates: The second “core” gene—sxtG.
Applied and Environmental
Microbiology,
79(7),
2128-2136.
[20] Oshima, Y.,
Blackburn, S. I. & Hallegraeff, G. M. (1993). Comparative study
on paralytic shellfish toxin profiles of the dinoflagellate
Gymnodinium catenatum
from three different countries.
Marine Biology, 116,
471-476.
[21] Palacios, L.,
Reguera, B., Franco, J. & Marin, I. (2006). Phylogenetic
diversity of bacteria associated with toxic and non-toxic
strains of Alexandrium minutum. African Journal of
Marine Science,
28(2),
409-414.
[22] Perini, F.,
Galluzzi, L., Dell’Aversano, C., Dello Iacovo, E., Tartaglione,
L., Ricci, F., Forino, M., Ciminiello, P. & Penna, A. (2014).
sxtA and
sxtG gene expression
and toxin production in the Mediterranean
Alexandrium minutum
(Dinophyceae). Marine
Drugs, 12,
5258-5276.
[23] Shimizu, Y.
(1993). Microalgal metabolites.
Chemical Reviews,
93, 1685-1698.
[24] Shimizu, Y. (1996). Microalgal metabolites: a new perspective.
Annual Review Microbiology,
50, 431-465.
[25] Silva, S. E. (1990). Intracellular bacteria: the origin of
dinoflagellate toxicity.
Journal of Environmental Pathology Toxicology and Oncology,
10,124-128.
[26] Stuken, A., Orr, R. J. S., Kellmann, R., Murray, S. A., Neilan,
B. A. & Jakobsen, K. S. (2011). Discovery of nuclear-encoded
genes for the neurotoxin saxitoxin in dinoflagellates.
PLoS One,
6(5).
[27] Usup, G., Kulis, D. M. & Anderson, D. M. (1994). Growth and
toxin production of the toxic dinoflagellate
Pyrodinium bahamense var.
compressum in laboratory cultures.
Natural Toxins,
2, 254-262.
[28] Usup, G., Cheah,
M. Y., Ng, B. K., Leaw, C. P. & Ahmad, A. (2006). Toxin profile
and relative toxicity of three paralytic shellfish poisoning
toxin-producing dinoflagellates from Malaysia.
Malaysian Applied Biology,
35(2), 41-45.
[29] Usup, G., Ahmad,
A., Matsuoka, K., Lim, P. T. & Leaw, C. P. (2012). Biology,
ecology, and bloom dynamics of the toxic marine dinoflagellate
Pyrodinium bahamense.
Harmful Algae,
14, 301-312.
[30] Wang, D. Z. (2008). Neurotoxins from marine dinoflagellates: a
brief review. Marine
Drugs, 6,
349-371.
[31] Wang, L., Zhuang, Y., Zhang, H., Lin, X. & Lin, S. (2014). DNA
barcoding species in
Alexandrium tamarense complex using ITS and proposing
designation of five species.
Harmful Algae,
31, 100-113. |