
 

T
R

A
N

S
A

C
T

IO
N

S
 O

N
 S

C
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 
 

Kochladze & Beselia, 2016. Transactions on Science and Technology. 3(1-2), 291 - 296 

Cracking of the Merkle–Hellman 

Cryptosystem Using Genetic Algorithm 
 

Zurab Kochladze1
* & Lali Beselia2 

1
Ivane Javakhishvili Tbilisi State University, 1, I.Chavchavadze av 1, 0128, Tbilisi, Georgia 

2
Sokhumi State University, 9, Anna Politkovskaya Street, 0186, Tbilisi, Georgia 

*Corresponding author. E-Mail: zurab.kochladze62@gmail.com; Tel: +995 32 2 224712; 
Fax: +995 32 2 223874 

 

 

Received: 30 March 2016 

Revised: 1 June 2016 

Accepted: 21 June 2016 

Online: 30 June 2016 
 

Keywords: 

Genetic algorithm; 

cryptanalysis; Merkle-

Hellman cryptosystem; 

Shamir’s algorithm; 

Cryptanalytic attack 

A b s t r a c t 

The article considers the possibility of using genetic algorithms in 

cryptanalysis, namely for cracking the Merkle-Hellman cryptosystem. The 

obtained analysis results lead us to conclusion that the use of genetic 

algorithms in cryptanalysis may be effective. For example, the genetic 
algorithm described in the article finds a cipher key faster than the well-

known Shamir algorithm. 
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Introduction 

In 1978 the famous Merkle & Hellman (1978) article was published, which described an open key 

(asymmetric) cryptosystem based on a concrete case of the knapsack problem (Martello & Toth, 

1990). We can formulate it as follows: there is a knapsack of V  volume and a set of 

},...,{ 21 nbbbB   subjects, which have certain volumes. Our goal is to find such BBi   subset of B  

set, for the elements of which the following equation is worked out: 





n

i

ii xbV
1

      (1) 

where }1,0{ix , ni ,...,2,1  in case 1ix . This means that we should place i subject into the 

knapsack, and in case 0ix -, then we should not place the subject into the knapsack. As it is known, 

the knapsack problem belongs to the NP grade task groups (Martello & Toth, 1990). However, in this 

concrete case, if B set is an extremely increasing sequence, i.e. each ib  member of the sequence 

fulfils the condition. 







1

1

,
i

j

ji bb        (2) 

Then there is a linear algorithm for the solution of the problem (Martello & Toth, 1990). 
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Using this feature, Merkle and Hellman (1978) developed an open key cryptosystem, in which 

the open cipher key is },...,{ 21 naaaA   non-extremely increasing sequence, where each ia  member 

of A sequence is obtained by the following rule: 

)(mod mtba ii  ,     (3) 

where Ztm , and the following conditions are fulfilled: 





n

i

ibm
1

, .1),( mt     (4)

 

The key of the cipher is the ),,( tmB three. The open text, which represents a sequence of zeroes and 

ones, during encryption is divided into a block of n  length and L quantity and acts as }1,0{ix set. 

The encrypted text is represented with LSSS ,...,, 21  sums, which are calculated by the formula: 





n

i

iijj axS
1

     (5) 

For restoring the open text it is necessary to solve the above mentioned version of the knapsack 

problem by a linear algorithm when B  extremely increasing sequence and m and t parameters are 

known. For this purpose each sum is multiplied by 
1t modulo m  

)(mod1/ mtSS jj

      (6) 

and the knapsack problem is solved by the above mentioned linear algorithm for each 
/

jS  sum 

separately, when B  extremely increasing sequence is known. In case an opponent desires to crack the 

system and find the open text he/she will have to solve NP problem that is quite impossible as far as 

the quantity of the members in B sequence changes from two hundred to three hundred elements. 

At a glance this system seemed to be protected from any cyber attacks and was the fastest open 

key system, the use of which was possible for encryption of vast texts. However, it turned out to have 

certain trapdoors (Salomaa, 1996), by use of which famous cryptologist A. Shamir (1984) created the 

polynomial algorithm and cracked the system.  

Among the weak points the most noteworthy is that unlike other open key cryptosystems, the 

open key is obtained from the cipher key not by means of a single-direction function. Moreover, 

seemingly, it is not at all necessary to find exactly the (t0,m0)  pair, by which the open key – A  non-

extremely increasing sequence is obtained from B  extremely increasing sequence. As it appears, any 

B  extremely increasing sequence, from which it is possible to obtain the given A  non-extremely 

increasing sequence, may be used as a cipher key, i.e. it is possible to make an attack on the key. 

Using these trapdoors A. Shamir (1984) created a two-stage algorithm to attack against 

cryptosystems. In the first stage the algorithm looks for such integers, for which the following 

http://transectscience.org/
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condition is fulfilled: u/m value for several ia -s is located in the common minimal space of these 

functions. After finding such numbers by the Diophantine approximation method the algorithm looks 

for the (u,m) pair, by means of which it becomes possible to calculate the cipher key from the open 

key. 

Using the Genetic algorithm to Crack the Merkle-Hellman cryptosystem 

Genetic algorithms were first used for the solution of optimization problems (Goldberg, 1989). After 

some time they were also used in different fields of sciences. Genetic algorithms are based on one of 

the basic principles of biological evolution: struggle for population saving by maximal adjustment to 

the environment that is reached by improvement and development of the best features in new 

generations. One of the most significant advantages of the genetic algorithms compared to other 

search algorithms is the possibility of their parallelization. This significantly decreases the attack time. 

Use of genetic algorithms for cryptanalysis of cryptographic algorithms is a new trend, which has not 

yet developed in practical cryptology. There are several hundreds of works, the authors of which 

make their efforts to show that this approach may have advantages compared to other ones (Garg & 

Shastri, 2006; Garg, et al., 2007; Muthuregunathan, 2009; Tadors et al., 2010; Ramani & 

Balasubramanian, 2011; Mishra & Bali, 2013). In regard to this we tried to crack the already cracked 

Merkle-Hellman cryptosystem by means of genetic algorithms. Then we compared the results 

obtained by us to the results obtained by the Shamir algorithm. There are works where the Merkle-

Hellman cryptosystem is cracked by genetic algorithms, though in all cases the attack is carried out on 

the basis of ciphertext (Spilman, 1993; Spilman et al., 1993; Garg & Shastri, 2006; Garg et al., 2007; 

Muthuregunathan, 2009; Ramani & Balasubramanian, 2011; Ramani, 2011). Unlike these works and 

like the Shamir method, we search for the cipher key by attacking against the open key. We 

elaborated new heuristic methods, by which made the use of genetic algorithms more precise and 

faster. The research results and software given in this article may be used for cryptanalysis of other 

asymmetric cryptosystems as well.  

 

The problem formulation and results 

Our method of attack is quite different from the methods used in the above mentioned works. Besides, 

we created a genetic algorithm quite different from other genetic algorithms (different in the selection 

criterion and crossover process). 

Our genetic algorithm is described in file “genetic2.h” created by us. In “genetic” class of the file 

four functions are described: the fitness function (bool fitness (vector<populatcia>&v)), the crossover 

function (void crossover (vector<populatcia>&v)), the mutation function (void 

fitness(vector<populatcia>&v)) and the selection function (void selektcia(vector<populatcia>&v)). 

algorithm is as follows: 

http://transectscience.org/
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1. The fitness function determines the extreme increase in each member (solution-candidate) of the 

population transmitted to it. The fitness value of the solution-candidate in the sequence is equal 

to the quantity of the extremely increasing members.  

2. The selection function chooses the selection-candidates, which the most fulfill the fitness 

function, i.e. their fitness values are higher than those of others. In case the population size is L 

we choose only L/5 solution-candidates. Exactly these solution-candidates form new generations. 

3. The crossover function receives the population of the solution-candidates. From this population 

we choose solution-candidates with t1 and t2 numbers in pairs by means of a random generator 

taking into account that t1 and t2 do not coincide with each other and the used pair is not 

repeated. Each solution-candidate is divided in two parts (at the mid point). 

4. The mutation function changes one byte of each solution-candidate. We choose the index by the 

random generator and change the relevant bit, i.e. if the bit value is zero it is changed in 1, and on 

the contrary, if it is 1, then it is changed in zero. 

 

Our goal is, using the above described algorithm, to find such (u,m) pair, by which we will be 

able to find the extremely increasing sequence by the following formula: 

)(mod muab ii  , where u=t
-1

 modulo m     (7) 

The algorithm is realized on C++ language base. It consists of the preparation and main parts. In the 

preparation part the information-to-be-transmitted is ciphered by the Merkle-Hellman algorithm. We 

took },...,{ 21 nbbb extremely increasing sequence, m modulo root and selected t multiplier, by means 

of which we calculated open key )(mod mtba ii  and ciphered the information-to-be-transmitted 

by (3) formula algorithm is as follows: 

1.  The initial population is represented by m root, which is initialized by random generator (it is 

represented in binary system). The size of each member (solution-candidate) of the population is 

d*n, where n is equal to the length of the open key and d=2; 

 The solution-candidates are transformed into binary system. 

2. Like the Shamir algorithm we take the first four members of the open key and calculate the 

inverse of t multiplier by m root ,/* iampu  where ,

1 1),(mod iapmtu  
 

40  i .Thus, we receive the population all probable multipliers. We set limits for selecting u 

multiplier. Besides (u,m)=1 and u<m,  u multiplier multiplied by the third member of the open 

key must exceed m root. By adding this limit we reduce the solution-candidates of u multiplier, 

i.e. make the algorithm more purposeful. We find the relevant closed key by (4) formula for all 

probable candidates of (u,m) pair. 

3. We determine the criterion for selection by the fitness function. In this case the criterion for 

selection is the extreme increase in the closed key obtained as a result of the fourth phase. In case 

http://transectscience.org/
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the sequence is extremely increasing, i.e. the value of the fitness function is less than n, we pass 

to the following phase. 

4. By means of the crossover function we carry out the crossover operation for the chosen solution-

candidates.  

5. For the received solution-candidates the second, third and fourth phases are repeated. In case the 

fitness function of any solution-candidate is equal to n, it means the desired result is obtained and 

the program stops functioning. Otherwise, we pass to the following phase. 

6. The selection function chooses the L/5 (L is the size of the initial population) number solution-

candidates, the fitness functions of which are higher.  

7. We have indicated that the process will repeat 10 times. If this process is repeated, 10 times and 

we don’t get the desired result, only in this case we use a mutation, or change the function of the 

gene, and then repeat the 2nd, 3rd and 4th steps. When we get the desired results, we stop 

working. But tests showed that non f the mutations feature is not needed, and the hybridization of 

a maximum of 5 times using we get the desired result.  

 

Table 1 shows the result obtained in the experiment. 

Table 1. The results of the experiments. 

No Knapsack 

sequence 
size 

Population 

size  

The number of 

experiments 
carried out 

Repeating the average 

number of genetic operators 
(crossover operation) 

Average 

execution time 

1. 8 10 10 2 3.41st 

2. 16 20 5 3 4.52st 
3. 16 30 5 4 7.41 st 

4. 20 50 5 5 8.71 st 

 

Discussion and Conclusion 

According to the experiment results, it is obvious that by using genetic algorithm, the Merkle-

Hellman cryptosystem is cracked quite quickly. Experiments show that our algorithm is almost twice 

faster than Shamir (1984) algorithm. Therefore, we can conclude that attacking of the open key 

cryptographic systems through the genetic algorithms can be done only on the basis of public key, 

even in cases when the polynomial algorithms of the attack are unknown.  
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