This study proposes an improved conjugate gradient (CG) method: the Tao-Rivaie-Hamizah (TRH) method and applies it to regression analysis of China's per capita disposable income over the past fifteen years. Unlike previous CG variants, TRH combines the numerator of the Hybrid Polak–Ribière–Polyak (HPRP) method with the denominator of the Hamoda–Rivaie–Mamat (HRM) method, thereby achieving faster convergence and enhanced robustness. Numerical experiments demonstrate that the TRH method generally outperforms several representative CG methods in terms of convergence speed and robustness. In economic applications, the TRH method yields smaller total relative errors and superior forecast values compared to Least Squares and Trend Line methods. These results validate the innovation and efficacy of the TRH method, providing a stable and effective solution for linear regression forecasting while further enriching and advancing the CG method.
KEYWORDS:
Conjugate gradient method, Least Squares method, TRH method, Trend Line method, linear regression forecasting
Andrei, N. 2008. An unconstrained optimization test functions collection. Advanced Modeling and Optimization, 10(1), 147-161.
Armstrong, J. S. & Fildes, R. 1995. Correspondence on the selection of error measures for comparisons among forecasting methods. Journal of Forecasting, 14(1), 67-71.
China, N. B. O. S. O. 2025. China Statistical Data Query Platform. (https://data.stats.gov.cn/easyquery.htm?cn=C01). Last access on 20 September 2025.
Dolan, E. D. & Moré, J. J. 2002. Benchmarking optimization software with performance profile. Mathematical programming, 91(2), 201-213.
Florens, J. P. & Van Bellegem, S. 2015. Instrumental variable estimation in functional linear models. Journal of Econometrics, 186(2), 465-476.
Ghani, N. H. A., Mamat, M. & Rivaie, M. 2017. A new family of Polak-Ribiere-Polyak conjugate gradient method with the strong-Wolfe line search. AIP Conference Proceedings (SKSM24). 27–29 September 2016. Terengganu, Malaysia. Vol. 1870, No. 1, p. 040060.
Hamoda, M., Mamat, M., Rivaie, M. & Salleh, Z. 2016. A conjugate gradient method with strong Wolfe-Powell line search for unconstrained optimization. Applied Mathematical Sciences, 10(721-734.
Hanachi, B., Sabrina, Sellami, B. & Belloufi, M. 2023. A new family of hybrid conjugate gradient method for unconstrained optimization and its application to regression analysis. RAIRO - Operations Research, 58(1), 613-627.
Majumder, S. C., Voumik, L. C., Rahman, M. H., Rahman, M. M. & Hossain, M. N. 2023. A quantile regression analysis of the impact of electricity production sources on CO2 emission in South Asian Countries. Strategic Planning for Energy and the Environment, 42(02), 307-330.
Mohamed, N. S., Mamat, M., Mohamad, F. S. & Rivaie, M. 2016. A new coefficient of conjugate gradient methods for nonlinear unconstrained optimization. Jurnal Teknologi (Sciences & Engineering), 78(6-4).
Qasim, A. M., Salih, Z. F. & Hassan, B. A. 2021. A new conjugate gradient algorithms using conjugacy condition for solving unconstrained optimization. Indonesian Journal of Electrical Engineering and Computer Science, 24(3), 1654-1660.
Sulaiman, I. M., Malik, M., Awwal, A. M., Kumam, P., Mamat, M. & Al-Ahmad, S. 2022. On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control. Advances in Continuous and Discrete Models, 2022(1), 1.
Sulaiman, I. M. & Mamat, M. 2020. A new conjugate gradient method with descent properties and its application to regression analysis. Journal of Numerical Analysis, Industrial and Applied Mathematics, 14(1-2), 25-39.
Zhang, L., Zhou, W. & Li, D.-H. 2006. A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA Journal of Numerical Analysis, 26(4), 629-640.