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ABSTRACT Prevalent challenges persist within remote sensing techniques for benthic habitat mapping. While efforts are 
being made to improve mapping accuracy through combined remote sensing approaches, the synergistic use of satellite 
and side-scan sonar datasets to address the inherent limitations of spectral discrimination and geometric distortions in each 
method remains limited. This review focuses on exploring the latent potential inherent in the complementary properties of 
both datasets. An analysis of articles from the Scopus databases published between 2010 and 2023 has shown that different 
data inputs with classification techniques influence the accuracy of coral reef community mapping. The integration of 
acoustically derived data and/or bathymetric data with satellite imagery can influence mapping results to varying degrees. 
The addition of acoustic hardness to satellite imagery has unfortunately led to inaccuracies. The contribution of slope derived 
from bathymetry varies with extraction algorithms; the use of more sophisticated algorithms leads to higher accuracy. 
Research on classification methods shows that object-based approaches produce different results depending on field 
conditions, which are consistently better than pixel-based methods, for both satellite spectral and side-scan sonar data. This 
review not only highlights conceptual discoveries, but also provides recommendations for future research: (1) the need for 
comparative evaluation of classification algorithms to determine the optimal classifier; and (2) side-scan sonar-derived slope 
as a forcing factor to improve accuracy. It is also expected that the review will provide valuable insights into data and 
classification decisions regarding the use of satellite imagery and acoustic data in future coral reef community mapping. 
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INTRODUCTION 

Coral reefs are highly productive and dynamic marine ecosystems that provide habitat and shelter 

for a wide range of species, including fish, invertebrates, and algae. Yet, many coral reefs are rapidly 

declining in the wake of increasing anthropogenic pressures and global climate change (Alquezar & 

Boyd, 2007). Coral-bleaching events are no longer constrained to years with extreme El 

Niño−Southern Oscillation (ENSO) conditions. The increase in intensity and frequency of ocean 

acidification and rising sea temperature have hampered the resilience of coral reefs against stresses 

(Hoegh-Guldberg et al., 2017). The duration between each thermal stress event to become shorter, to 

the extent that there is not enough time for coral communities to recover from their previous 

disturbance event (Hughes et al., 2018). Consequentially, coral reefs are confronting the prospect of 

ecological collapse, with projections suggesting that as much as 70-90% of these reefs could vanish by 

the year 2050 (Hooidonk et al., 2016). 

 

Accurate information about the geographic distribution, abundance, and overall health of tropical 

marine resources is crucial for effective ecosystem-based management. This can be achieved by 

establishing reliable baseline data, such as benthic maps (Singh et al., 2021), that play a pivotal role in 

guiding restoration targets and strategic management plans (Hossain et al., 2016). Optical and acoustic 

remote sensing techniques are invaluable for creating continuous mapped representations of benthic 

habitats at various scales (Costa & Battista, 2013). Both techniques and their associated methods of 

data collection vary with regard to their spatial, temporal and, in the case of optical sensors, spectral 
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resolution, and these properties will affect the scale and accuracy of the final habitat map (Reshitnyk 

et al., 2014). 

 

While passive optical sensors have successfully mapped nearshore benthic habitats, they are 

subject to environmental conditions such as clouds, sun glints, tides and surface roughness that can 

obscure or mask target features (Bennett et al., 2020). In contrast, acoustic remote sensing technologies 

are commonly utilized for mapping subtidal habitats located at greater water depths that passive 

optical sensors may struggle to effectively capture. These acoustic ground-discrimination systems 

(AGDS) encompass multi-beam sonar (bin Samsudin, 2020), side scan sonar (Mustajap et al., 2015), 

and single-beam echosounders (SBES) (Reshitnyk et al., 2014). However, it's important to note that 

acoustic sensors have limitations when it comes to mapping very shallow areas (less than 0.5 meters) 

or areas with exposed seafloor. 

  

To address the limitations of optical and acoustic sensing, the integration of data from both 

sources, particularly through combining side-scan sonar and boat-based sonar with satellite data 

dating as far back as 2005, has demonstrated improved performance in reef habitat mapping 

(Bejarano et al., 2010; Karpouzli & Malthus, 2007; Riegl & Purkis, 2005). This progress is facilitated by 

data fusion, a process that combines information collected from diverse sources, including sensors on 

satellites, aircraft, and ground-based platforms to enhance data quality and interpretation, resulting 

in high-resolution representations (Zhang, 2010). Accurate mapping of coral benthic habitats is also 

closely linked to remote sensing image classifications (Burns et al., 2022), which extract valuable 

information. 

  

The primary aim of this review is to serve as a comprehensive reference for reef researchers and 

managers, offering insights into the integration of satellite and sonar datasets. It explores the potential 

of combining optical and acoustic systems for mapping coral reef communities and assesses the 

effectiveness of classification techniques in enhancing coral reef community mapping.  

 

 

MATERIALS AND METHODS 

This review compiles and compares data on the integration of satellite imagery and sonar data in 

coral reef community mapping from peer-reviewed studies published between 2010 and 2023. The 

data was collected by Scopus for indexed articles (research and review articles), conference papers, 

book chapters and series. Keywords used to search the database included “benthic”, “habitat”, 

“satellite”, “sonar”, “seafloor”, morphology”, in combination with "integration", “coral”, “seabed”. A 

total of 131 publications were selected. In addition, relevant papers were cited according to the year 

of publication. 

 

In the context of mapping or quantifying the extent of coral reefs using remote sensing 

technologies, this discussion is organized into three sections. The first section introduces the key 

remote sensing technologies employed in coral mapping, with a primary focus on satellite and 

acoustic data sources. The second section explores the potential benefits of integrating parameters 

derived from both acoustic and satellite sources to enhance mapping accuracy. Finally, the third 

section delves into the optimal classification techniques to achieve the best mapping results when 

using each technology individually and in combination. 
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RESULTS AND DISCUSSION 

 

Analysis of Publication Trends, Types, and Geographic Distribution (2010–2023) 

The annual distribution of published articles from 2010 to 2023 (Figure 1) shows clear trends: a 

growth phase from 2016 to 2018, a stabilisation from 2019 to 2021 and a slight decline in 2022–2023. 

Between 2010 and 2013, the number of publications fluctuated between 2 and 8, with a notable 

increase in 2012, followed by a slight decline in 2013. From 2014 to 2016, the number remained 

constant at 6–8, before declining in 2016. 

 
Figure 1. Annual trend of scientific publications (2010–2023). 

 

A strong recovery in 2017 surpassed the 2015 level, reaching 18 articles in 2018, the highest level 

in this period. From 2019 to 2021, the number of publications stabilised slightly below the 2018 peak, 

indicating continued productivity. A gradual decline began in 2022, but the publication figures for 

2022–2023 remain well above those of 2010–2017, indicating long-term growth. As summarised in 

Table 1, 79.39% of publications are journal articles, 16.03% are conference proceedings, and the 

remainder include books (3.05%) and book series (1.53%). 

 

Table 1. Type of publications (2010-2023). 

Source type Number Percentage 

Journal articles 104 79.39% 

Conference proceedings 21 16.03% 

Book 4 3.05% 

Book series 2 1.53% 

Total 131 100% 

 

The 131 publications from 2010–2023 cover various subject areas, all of which were published in 

English. The leading fields are earth and planetary sciences (79 publications), agricultural and 

biological sciences (49 publications) and environmental sciences (41 publications), followed by 

engineering (18 publications) and computer science (13 publications). The remaining publications are 

spread across multidisciplinary fields, including social sciences, biochemistry, genetics, molecular 

biology, physics, astronomy, mathematics, materials science, chemistry, decision sciences and energy. 
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These publications come from 52 countries on all continents (Table 2). The most prolific 

contributors with more than six publications include the United States (32), Australia (28), Indonesia 

(14), the United Kingdom (13), France (10), Spain (8), Brazil (7), Germany (7), Malaysia (7) and Italy 

(6). 

Table 2. Number of publications by continent, country, or territory. 

Continent 

(number of 

publications) 

Country or territory (number of publications (authors)) 

Africa 

(Total 6 

publications) 

• Egypt (3 publications (Abo Elenin et al., 2020; Darweesh et al., 2021; 

Mohamed et al., 2018)) 

• Kenya (1 publication (McClanahan & Muthiga, 2016)) 

• South Africa (2 publications (Livingstone et al., 2018; Pillay et al., 2021)) 

Antarctica • None 

Asia 

(Total 54 

publications) 

• China (5 publications (He et al., 2023; Huang et al., 2022; Ma et al., 2023; 

Wang et al., 2022; Yang & Yang, 2015)) 

• India (1 publication (Sinner et al., 2023)) 

• Indonesia (14 publications (Agus et al., 2021; Hamidah et al., 2021; Hamsah 

et al., 2019; Kartikasari et al., 2021; Manessa et al., 2014; Nababan et al., 2021; 

Nandika et al., 2023; Pramudya et al., 2014; Rozi Nasrul et al., 2021; Setiawan 

et al., 2022; Solihuddin et al., 2019; Supriyadi et al., 2023; Thalib et al., 2019; 

Wicaksono, 2016)) 

• Iran (5 publications (Jalali et al., 2018; Kabiri et al., 2020, 2018, 2014, 2013)) 

• Israel (1 publication (van den Bergh et al., 2021)) 

• Japan (5 publications (Manessa et al., 2014; Mohamed et al., 2018; Muslim 

et al., 2012; Rintoul et al., 2022; Tamondong et al., 2013)) 

• Malaysia (7 publications (Aziz et al., 2014; Grantham et al., 2021; Kabiri et 

al., 2013; Muslim et al., 2019, 2012; Mustapha et al., 2014; Nababan et al., 

2021)) 

• Maldives (1 publication (Andréfouët et al., 2012)) 

• Pakistan (1 publication (Iqbal et al., 2019)) 

• Philippines (5 publications (Foster et al., 2011; Hedley et al., 2016a; Rabi et 

al., 2015; Sievers et al., 2020; Tamondong et al., 2013)) 

• United Arab Emirates (2 publications (Ben-Romdhane et al., 2016a, 2016b) 

• Qatar (1 publication (Butler et al., 2021)) 

• Russian Federation (1 publication (Priede et al., 2013)) 

• Saudi Arabia (2 publications (Pearman et al., 2018; Roelfsema et al., 2020)) 

• Taiwan (1 publication (Pearman et al., 2018)) 

• Viet Nam (1 publication (Tran et al., 2010)) 

• Yemen (1 publication (Sagheer, 2013)) 

Europe 

(Total 69 

publications) 

• Belgium (2 publications (Muller-Karger et al., 2018; Sinner et al., 2023)) 

• Bulgaria (1 publication (Berov et al., 2022)) 

• Estonia (2 publications (Hedley et al., 2018; Kutser et al., 2018)) 

• France (10 publications (Bajjouk et al., 2019; Chami et al., 2019; Collin et al., 

2019; Hedley et al., 2018; Le Quilleuc et al., 2022; Minghelli et al., 2021; 

Nguyen et al., 2021a; Priede et al., 2013; Sinner et al., 2023; van Wynsberge 

et al., 2012)) 

• Germany (7 publications (Hedley et al., 2016a; Muller-Karger et al., 2018; 

Roelfsema et al., 2018a, 2020; Solihuddin et al., 2019; Teixeira et al., 2015; 

Traganos & Reinartz, 2018)) 

• Iceland (1 publication (Priede et al., 2013)) 

• Italy (6 publications (Borfecchia et al., 2019; Collin et al., 2019; Foglini et al., 

2018; Hedley et al., 2018; Immordino et al., 2019; Zoffoli et al., 2022)) 

• Malta (1 publication (Micallef et al., 2012)) 
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• Netherlands (4 publications (Kabiri et al., 2013; Muller-Karger et al., 2018; 

Nandika et al., 2023; Polónia et al., 2015)) 

• Norway (3 publications (Foglini et al., 2018; Priede et al., 2013; Sinner et al., 

2023)) 

• Poland (2 publications (Priede et al., 2013; Sokołowski et al., 2021)) 

• Portugal (3 publications (Polónia et al., 2015; Priede et al., 2013; Tempera et 

al., 2012)) 

• Spain (8 publications (Eugenio et al., 2017; Marcello et al., 2018; Mata et al., 

2021; Micallef et al., 2012; Parrish et al., 2022; Rajani et al., 2023, 2023; Serrano 

et al., 2013; Sinner et al., 2023)) 

• Sweden (4 publications (Berov et al., 2022; McLaren et al., 2019; Sinner et al., 

2023; Teixeira et al., 2015)) 

• Switzerland (2 publications (Goodman et al., 2020; Grol et al., 2020)) 

• United Kingdom (13 publications (Collin et al., 2019; Craig et al., 2010; 

Foster et al., 2011; Hedley et al., 2016a, 2018; Micallef et al., 2012; Piechaud 

et al., 2015; Priede et al., 2013; Sinner et al., 2023; Szostek et al., 2016; Teixeira 

et al., 2015; Tempera et al., 2012; Townsend et al., 2018)) 

Oceania 

(Total 38 

publications) 

• Australia (28 publications (Collings et al., 2020; Doo et al., 2017; Foster et al., 

2011; Goodell et al., 2018; Grantham et al., 2021; Grol et al., 2020; Hamylton 

et al., 2017; Hedley et al., 2016a, 2018; Jalali et al., 2018; Knudby et al., 2011; 

Kovacs et al., 2022; Livingstone et al., 2018; Lucieer et al., 2013; Mellin et al., 

2012; Muller-Karger et al., 2018; Nguyen et al., 2021a; Piggott et al., 2020; 

Priede et al., 2013; Purkis & Roelfsema, 2015; Roelfsema et al., 2018a; 

Roelfsema & Phinn, 2009; Roelfsema et al., 2020, 2021; Sievers et al., 2020; 

Tran et al., 2010; van Wynsberge et al., 2012; Williamson et al., 2021)) 

• Fiji (2 publications (Knudby et al., 2011; Singh et al., 2021b)) 

• French Polynesia (2 publications (Collin et al., 2019; Le Quilleuc et al., 

2022)) 

• New Caledonia (3 publications (Andréfouët et al., 2012; Mellin et al., 2012; 

van Wynsberge et al., 2012)) 

• New Zealand (3 publications (Burns et al., 2022b; Naidu et al., 2018; 

Townsend et al., 2018)) 

North America 

(Total 45 

publications) 

• Bermuda (1 publication (Zeng et al., 2022b)) 

• Canada (4 publications (Knudby et al., 2011; Mellin et al., 2012; Misiuk & 

Brown, 2022; Reshitnyk et al., 2014b)) 

• Dominica (1 publication (Steine & Willette, 2010)) 

• Jamaica (1 publication (McLaren et al., 2019)) 

• Mexico (2 publications (Arias-González et al., 2012; Cruz-Vázquez et al., 

2019)) 

• Panama (1 publication (Pearman et al., 2018)) 

• Puerto Rico (3 publications (Armstrong, 2016; Rintoul et al., 2022; 

Sotomayor et al., 2016)) 

• United States (32 publications (Butler et al., 2021; Chirayath et al., 2020; 

Collings et al., 2020; Foster et al., 2011; Fraiola et al., 2023; Goodell et al., 2018; 

Goodman et al., 2020; Hamylton et al., 2017; Hatcher et al., 2020; Hedley et 

al., 2016a; Hernández et al., 2020; Le Quilleuc et al., 2022; A. S. Li et al., 2020; 

Li et al., 2019; J. Li et al., 2020; Lidz & Zawada, 2013; McClanahan & 

Muthiga, 2016; Muller-Karger et al., 2018; Naidu et al., 2018; Parrish et al., 

2022; Pearman et al., 2018; Priede et al., 2013; Purkis & Roelfsema, 2015; 

Purkis et al., 2019; Reif et al., 2021; Rintoul et al., 2022; Steine & Willette, 

2010; van den Bergh et al., 2021; Wei et al., 2018; Wirt et al., 2013; Zeng et al., 

2022b; Zoffoli et al., 2022)) 
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South America 

(Total 10 

publications) 

• Brazil (7 publications (Araujo et al., 2023; Conti et al., 2020; De A. Mazzuco 

et al., 2020; de Azevedo Mazzuco & Fraga Bernardino, 2022; de Oliveira et 

al., 2019; Rocha et al., 2020; Zoffoli et al., 2022)) 

• Chile (1 publication (Grantham et al., 2021)) 

• Colombia (1 publication (Mondragón et al., 2010)) 

• Venezuela (1 publication (Muller-Karger et al., 2018)) 

 

 

Field Surveys vs. Remote Sensing Technologies 

Field surveys and remote sensing are the two main methods for assessing coral cover and health 

(Dung et al., 2023). The former method collects data through in-person measurements and direct 

observation, thus providing accurate information on coral density, species distribution and colony 

size. However, field surveys require a considerable time and financial burden for monitoring large 

areas and are unfriendly to remote regions with limited boat access (Foo & Asner, 2019). These 

problems are addressed with remote sensing with technological advancement.  

 

Remote sensing is the collection of information about the physical characteristics of a region from 

a distance by detecting the radiation emitted and reflected from it (Gonzalez-Rivero et al., 2020). It is 

cost and time-efficient for large coverage when identifying coral reefs (Komatsu et al., 2019) and 

provides higher accuracy than local environmental knowledge in estimating habitat distributions 

(Selgrath et al., 2016). In the current era, remote sensing is probably the only technology capable of 

detecting widespread, often subtle changes or spatially and temporally limited, episodic changes in 

coral reef exposure to anthropogenic stressors (Hedley et al., 2016).  

 

Remote sensing can be categorized in several ways, primarily based on the source and type of 

energy used. Passive remote sensing relies on naturally occurring energy sources like reflected 

sunlight or radiated heat (Janga et al., 2023). In contrast, active sensing technologies generate their 

own energy and capture the returning signals from a transmission source (Foo & Asner, 2019). 

 

These two broad categories can be further divided into optical and acoustic remote sensing 

technologies, depending on the type of energy employed. In coral reefs, optical remote sensing 

harnesses various ranges of electromagnetic radiation. It gathers crucial information by measuring 

light interactions within the reef ecosystem. Passive optical sensors, found on satellites, aircraft, or 

drones, collect data about coral reefs and their surroundings. An example of active optical sensing is 

LiDAR (Light Detection and Ranging), which measures the time and intensity of emitted return laser 

pulses. LiDAR is particularly useful for bathymetry measurement in non-navigable areas (Szafarczyk 

& Toś, 2023). 

 

Conversely, acoustic sensors utilize acoustic waves produced by the compression and expansion 

of water masses. Passive sensors like hydrophones convert underwater sound into electrical signals. 

For collecting data on depth, seabed topography, geomorphic zones, and general habitat information, 

active acoustic sensors such as SONAR (Sound Navigation and Ranging) are deployed from ships. 

SONAR provides measurements in various environments, ranging from shallow waters to depths 

exceeding 100 meters (Foo & Asner, 2019). 

 

Remote Sensing Technologies for Coral Reef Community Mapping: Sensors and Limitations 

Satellite sensors 

Among the available remote sensing technologies, satellite-based multispectral technology stands 

out as the most mature, thoroughly tested, and well-suited for assessing the general distribution of 
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reef geomorphology and benthic cover (Foo & Asner, 2019). Satellite sensors provide datasets of 

different qualities depending on the aim and scope of the study.  

 

Multispectral and hyperspectral imaging permits the assessment of habitat characteristics in clear 

water up to 20 m depth (Foo & Asner, 2019). Despite a lack of clarity, satellite hyperspectral sensors 

for coastal applications typically provide image data in a much wider range of narrow bands, 

consisting of more than 20 bands with bandwidths of less than 15 nm in the visible wavelength range 

(Dierssen et al., 2021). Multispectral sensors, on the other hand, produce images in a limited number 

of bands with no more than 20 or 30 channels (Nguyen et al., 2021). As hyperspectral remote sensing 

provides more meaningful information about the environment (Dierssen et al., 2021), it is attracting 

great interest in quantifying spectral signatures, mapping geomorphic zones and detecting periodic 

shifts in coral reef habitats (Zeng et al., 2022a).  

 

The freely accessible Landsat satellite with 30 m resolution has provided a long-time series archive 

since its first launch in 1984. Sentinel 2 sensors are a recent development that provides a similar 

moderate open-source dataset but with a higher spatial resolution of 10 m in some bands (Hedley et 

al., 2016). These moderate-resolution satellites, with pixel sizes ranging from 10 to 30 meters, can 

provide cost-effective solutions for mapping extensive reef areas (Foo & Asner, 2019).  

 

However, in recent years, high-resolution satellite data sources like Ikonos, GeoEye, Quickbird, 

WorldView 2 and 3, and Pleiades, offering resolutions finer than 10 meters, have become increasingly 

prevalent and are now a popular choice for detailed habitat-level mapping (Hedley et al., 2016). 

PlanetScope imagery with a 3 m pixel size, freely available for educational and research purposes, 

has shown promise for monitoring coral patterns as it is available on a daily basis (Nguyen et al., 

2021). It has proven to be particularly beneficial for monitoring coral reefs on small islands, providing 

a solid scientific basis and reliable information for establishing a more detailed ecological monitoring 

and management system for coral reefs (Dung et al., 2023). 

 

Despite the rapid advancements in remote sensing technologies, there are certain limitations when 

it comes to using satellite sensors for coral reef mapping. These limitations include factors like 

variations in water depth, atmospheric conditions, and the distribution of the Sun's radiation, which 

constrain the achievable signal-to-noise ratios and the choice of light frequencies suitable for 

multispectral satellite imaging in aquatic environments (Chirayath & Li, 2019). 

 

Furthermore, a challenge arises from the trade-off between high spatial resolution and high 

spectral resolution in satellite sensors. The key factor impacting spectral resolution, and consequently 

enhancing benthic mapping, lies in the number of visible bands and the inclusion of infrared bands 

(Nguyen et al., 2021). Visible light and infrared bands can penetrate the water column, making them 

the primary sources of data for extracting information from aquatic environments (Li et al., 2022). This 

includes crucial data on water depth and benthic habitats (Kutser et al., 2020).  

 

Often, sensors that offer excellent spatial resolution lack the necessary spectral resolution, and vice 

versa. The inability to simultaneously achieve both high spatial and spectral configurations in single 

imagery hinders their broader application in discriminating habitat communities at a finer level of 

detail (Zhang, 2015). This challenge is compounded by the attenuation of energy in the water column 

as depth increases, leading to misclassifications between dominant species with similar absorption 

spectra for photosynthetic pigments. For example, habitats dominated by algae may be mistakenly 

identified as habitats dominated by living corals (Wicaksono et al., 2019). 
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To effectively capture the fine-scale details of coral reef characteristics, spatial resolutions finer 

than what most satellite-based sensors can provide are required (Foo & Asner, 2019). Consequently, 

the limitations of spectral data have spurred numerous research efforts in the field of acoustic remote 

sensing. In fact, from 2018 to 2020, the number of publications utilizing acoustic methods for remote 

sensing exceeded the number of publications focusing on optical satellites for coral mapping in a 

review study (Nguyen et al., 2021). 

 

Acoustics side scan sonar sensors 

Among all, side scan sonar (SSS) is a commonly used acoustic instrument for locating and 

investigating marine environments in shallow and deep waters, including coral reefs, seagrass beds 

and rhodoliths (Zhao et al., 2018). Most modern SSS devices operate at two frequencies, allowing them 

to image the seabed from a multispectral perspective (Fakiris et al., 2019). It provides backscatter 

images of the seafloor at a much higher resolution, making them ideal for comprehensive habitat 

mapping using texture analysis. Higher-resolution side scan sonar produces more detailed 

sonograms. This increased detail manifests in the textural bands of higher frequencies. Hence, the 

incorporation of additional frequency bands has the potential to enhance class differentiation and 

boost classification rates even further (Malthus et al., 2009). 

 

Compared to other hydroacoustic devices, a side scan sonar (SSS) can efficiently survey large areas 

of the seabed. Unlike multibeam echo sounders (MBES), SSS is not limited to a narrow range of beam 

angles and can collect data from very high scattering angles, making it more suitable for shallow 

waters (Fakiris et al., 2019). Recent trends show an upswing in the popularity of side scan sonar as the 

systems become more affordable, portable and practical in shallow water environments, including 

rivers and coastal areas (Zhao et al., 2017). 

 

Side scan sonar has been combined with a multibeam echo sounder (MBES) in seabed surveying 

and mapping. This is due to the ability of MBES to directly measure the three-dimensional geometry 

of the seabed, resulting in the creation of a bathymetric map (Xie et al., 2022), which is an essential 

element in creating a comprehensive map of seabed habitat. In contrast, side scan sonar, which is used 

to obtain detailed images of the seabed due to its high resolution and wide coverage, has been 

criticised for lacking secondary information such as bathymetry and the angular dependence of 

returning echoes (bin Samsudin, 2020). This prevents SSS from being accurately corrected for 

radiometric and geometric artefacts and makes it difficult to study the angular dependence of 

backscatter for habitat discrimination (Fakiris et al., 2019).  

 

However, it's important to note that the intensity data provided by SSS does contain valuable 

information related to the seabed slope. Extracting this information is crucial (Xie et al., 2022). 

Researchers have developed techniques, mainly based on Shape from Shading (SFS), to reconstruct 

the 3D geometry of seabed components and submerged objects from side scan sonar data (Bikonis et 

al., 2013). In a recent study, (Xie et al., 2022) successfully reconstructed high-resolution bathymetry 

using side scan sonar data. They achieved this by utilizing a fully convolutional network to predict 

both the depth contour and its associated aleatory uncertainty.  

 

A key drawback of sonar technology is its limitation in surveying or navigating through extremely 

shallow waters where boats cannot safely operate. Using these methods to characterize areas like the 

reef crest or shallow reef flats may either be impossible or, at best, significantly hindered by factors 

such as tide levels and sea conditions (Hedley et al., 2016).  At a wave height of 1.2 m, the quality of 

the SSS data was adversely impacted due to the increased presence of air bubbles and debris in the 

water column, to the extent that post-processing was not able to fully compensate for the data noise 
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(Capperucci et al., 2020).To maintain the sample conditions, they were transported in a container with 

vibration isolator (Chong, 2012). 

 

Optimized Use of Various Satellite and Sonar-Derived Datasets  

This section focuses on quantifying and harnessing the synergies between different datasets from 

both satellite and acoustic sources to optimize their usage. By combining multiple image data sets 

with additional environmental information, it becomes possible to create highly accurate benthic 

maps (see Table 3). 

 

Table 3. Contribution of satellite and acoustics parameters in benthic habitat mapping. The influence 

of the types of sensors, band inputs, benthic classes, and classification methods on the overall 

accuracy are included in the table below. 

Authors Sensors Band Inputs 
Benthic 

classes 
Benthic Classes 

Classification 

methods 
Overall accuracy 

(Wicaks

ono et 

al., 

2019) 

WorldVie

w-2 

Deglint bands 

 

14 • Healthy coral 

• Intermediate 

coral 

• Dead coral  

• Halophile 

ovalis 

• Enhalus 

acoroides 

• Thalassia 

hemprichii 

• Enhalus 

acoroides - 

Thalassia 

hemprichii 

• Thalassia 

hemprichii - 

Cymodocea 

rotundata 

• Cymodocea 

rotundata  - 

Halodule 

uninervis 

• Mixed 

seagrass 

• Brown algae 

• Mixed algae 

• Sand 

• Rubble 

Random Forest 

(RF)/ Classification 

Tree Analysis 

(CTA) / Support 

Vector Machine 

(SVM) 

 

88.01%/ 75.58%/ 

75.04 

 WorldVie

w-2 

Deglint-

Bathymetry-

Slope 

 

14 

87.68%/ 75.25%/ 

73.99% 

 WorldVie

w-2 

DII 
14 

87.85%/ 77.80%/ 

75.98% 

 WorldVie

w-2 

DII-

Bathymetry-

Slope 

14 

88.07%/ 76.82%/ 

73.25% 

 WorldVie

w-2 

PC bands 
14 

87.88%/ 73.28%/ 

73.55 

 WorldVie

w-2 

PC-

Bathymetry-

Slope 

14 

88.29%/ 71.84%/ 

73.78 

 WorldVie

w-2 

All dataset 

14 

RF/ CTA 88.54%/ 77.17% 

(Riegl & 

Purkis, 

2005) 

IKONOS-

QTCView 

Optical - 

Single- beam 

sonar data 

8 

• Dense live coral 

• Dense dead coral 

• Sparse coral  

• Seagrass 

• Shallow algae 

• Deep algae 

• Hardground 

• Sand 

Multi-variate-

normal 

probability 

density 

function 

(depth 

correction of 

optical layers 

69% 
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using acoustic 

z) 

(Karpou

zli & 

Malthus

, 2007) 

IKONOS Optical 

10 

• Sheet corals 

• Massive and 

encrusting corals 

• Dead coral  

• Green algae 

• Bedrock & rubble 

with dense 

gorgonians 

• Sand & rubble with 

some algae 

• Sand with some 

algae 

• Sparse seagrass 

and algae 

• Medium density 

seagrass and algae  

• Dense seagrass and 

algae  

Distinct 

Functional 

Analysis 

(DFA) 

29% 

 GeoAcous

tics Side 

scan sonar 

Backscatter 

 

 34% 

 IKONOS-

GeoAcous

tics Side 

scan sonar 

Optical-

Backscatter 

 

 52% 

(Bejaran

o et al., 

2010) 

IKONOS Optical 

4 

• Unconsolidated 

Montastraea reefs 

• Consolidated 

Montastraea reefs 

• Gorgonian plains 

• Sand patches 

Unsupervised 

 

56% 

 RoxAnn Acoustic 

roughness 
4 

Unsupervised 48% 

 RoxAnn Acoustic 

hardness 
4 

Unsupervised 46% 

 RoxAnn Acoustic depth 4 Unsupervised 53% 

 RoxAnn Acoustic 

roughness, 

hardness, depth 

4 

Unsupervised/

Supervised 

61%/ 57% 

 IKONOS 

& 

RoxAnn 

Optical and 

roughness 4 

Unsupervised/

Supervised 

52%/ 54% 

 IKONOS 

& 

RoxAnn 

Optical and 

hardness 4 

Unsupervised/

Supervised 

34%/ 50% 

 IKONOS 

& 

RoxAnn 

Optical and 

depth 4 

Unsupervised/

Supervised 

54%/ 68% 

 IKONOS 

& 

RoxAnn 

Optical, 

roughness 

hardness, depth 

4 

Unsupervised/

Supervised 

59%/ 68% 

 IKONOS 

& 

RoxAnn 

Depth 

corrected 

optical 

4 

Unsupervised/

Supervised 

70%/ 60% 

 IKONOS 

& 

RoxAnn 

Depth 

corrected 

optical, 

roughness 

hardness, depth 

4 

Unsupervised/

Supervised 

70/ 71% 
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Role of bathymetry data 

The vertical control of water depth plays a pivotal role in determining the spatial distribution of 

benthic habitats, primarily because most photosynthetic organisms are limited by depth. Hence, 

bathymetry is a crucial factor to consider when mapping the spatial distribution of benthic habitats 

(Wicaksono et al., 2019). Bathymetric maps can be obtained using various methods, including boat-

based sonar or echo-sounders, airborne LIDAR systems, or by estimation from optical multispectral 

or hyperspectral imagery (Hedley et al., 2016). 

 

The integration of bathymetry data and slope – one of the bathymetry derivatives – to enhance 

benthic habitat mapping has produced contrasting results depending on the type of sensors, 

bathymetry estimation methods, different input bands and the classification algorithm employed. 

 

In hyperspectral systems alone, the inclusion of bathymetric data does not significantly 

complement the spectral information from optical imagery to enhance the accuracy of benthic habitat 

classification (Zhang et al., 2013). However, when aerial photography is added to the same dataset, as 

observed by (Zhang, 2015), the contribution of bathymetry data becomes statistically significant for 

the code-level classification of 24 subcategories, but not for the group-level classification, which 

focuses on broader categories (Eugenio et al., 2015). demonstrated improved benthic habitat 

classification performance using bathymetry data estimated from WorldView-2. This improvement 

is likely due to the higher-quality bathymetry obtained through a more complex radiative transfer 

model (Wicaksono et al., 2019). Similarly, combining bathymetry data from a multibeam echosounder 

with backscatter data from side scan sonar improves mapping accuracy, increasing it from 21% (SSS 

BS) to 71% (SSS BS and bathymetry) (Fakiris et al., 2019).  

(Zhang 

et al., 

2013) 

AVIRIS MNF 

transformed 

hyperspectral 

image 

3 

• Hardbottom 

• Continuous 

seagrass 

• Patchy seagrass 

 

RF 80.8% 

 National 

Geophysi

cal Data 

Centre 

(NGDC) 

MNF 

transformed 

hyperspectral 

image, 

bathymetry 

3 

• Hardbottom 

• Continuous 

seagrass 

• Patchy seagrass 

RF 87.4% 

(Zhang, 

2015) 

Digital 

Orthopho

to Quarter 

Quads 

(DOQQs) 

Aerial 

photography 

3 

• Hardbottom 

• Continuous 

seagrass 

• Patchy seagrass 

RF 63.6% 

 AVIRIS, 

DOQQS, 

NGDC 

Hyperspectral 

image, aerial 

photography, 

bathymetry 

3 

• Hardbottom 

• Continuous 

seagrass 

• Patchy seagrass 

RF 86.3% 

 

 AVIRIS, 

DOQQS, 

NGDC 

Hyperspectral 

image, aerial 

photography, 

bathymetry 

3 

• Hardbottom 

• Continuous 

seagrass 

• Patchy seagrass 

RF/SVM/k-NN 88.5%/ 82.2%/ 

88.5% 

 

 AVIRIS, 

DOQQS, 

NGDC 

Hyperspectral 

image, aerial 

photography, 

bathymetry 

3 

• Hardbottom 

• Continuous 

seagrass 

• Patchy seagrass 

Ensemble 

Analysis 

(RF + SVM + 

k-NN) 

89.6% 
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Using the Random Forest (RF) algorithm, (Wicaksono et al., 2019) achieved the highest accuracy, 

88.54%, when all deglint, Depth-Invariant Bottom Index (DII) bands, Principal Component Analysis 

(PCA) bands, bathymetry and slope bands were included in Sentinel 2 imagery for shallow benthic 

habitat mapping. However, the impact was not significantly pronounced for the incorporation of 

bathymetry and slope data, with just a slight increment of <1% in accuracy. Interestingly, the inclusion 

of slope data even led to reduced accuracy when using Classification Tree Analysis (CTA) and 

Support Vector Machine (SVM) models. These models achieved their highest accuracy—77.80% for 

CTA and 75.98% for SVM—when only the DII bands were utilized (Wicaksono et al., 2019). 

 

Integration and synergy of satellite and sonar data 

To the best of the author's knowledge, the integration of satellite and side scan sonar imagery, 

despite numerous publications on integration techniques, has been explored in depth by only one 

study conducted by (Karpouzli & Malthus, 2007), with improvements published in 2009. When 

IKONOS imagery was combined with side scan sonar imagery for coarse-resolution classification of 

corals, algae, seagrasses, and bare substrate, the accuracy of benthic coral reef community mapping 

increased significantly by up to 21% compared to using each sensor individually (Karpouzli & 

Malthus, 2007).  

 

In other studies, acoustic depth (z) was used to perform water column correction of optical bands 

for actual depth. (Bejarano et al., 2010) conducted a study to quantify the synergy between optical 

satellite data (IKONOS) and acoustic (RoxAnn) sensors by calculating the relative contribution of 

acoustic parameters. A total of eleven layers consisting of six different combinations of acoustic and 

optical inputs were tested for the accuracy of four benthic classes. When added separately to DII, 

roughness (E1) and depth (z) had no effect on classification accuracy, but interestingly, acoustic 

hardness (E2) significantly reduced accuracy. The low E2 contribution is due to the underlying 

substrate of the coral-dominated ecosystems, which is a carbonate matrix with a fairly homogeneous 

hardness. Applying supervised classification to depth-corrected optical layers and including E1, E2 

and z allowed the greatest improvement in accuracy. Gorgonian plains were easily separated from 

coral-dominated habitats when either E1 or z were included, but they were acoustically confused with 

sand patches, resulting in low map accuracy for sand (Bejarano et al., 2010).  

 

 

Machine Learning Algorithms for Coral Reef Community Classification  

Remote sensing image classification is a key process to extract and analyze valuable information 

(Dhingra & Kumar, 2019) which affects the accuracy of remote sensing special subject information 

(Zhu et al., 2016). The introduction of machine learning has greatly improved detailed classification 

for coral reef community mapping (da Silveira et al., 2021). However, as remote sensing circumstances 

may differ from image to image, a trained algorithm cannot be generalized spatially or temporally to 

map the benthic composition of the coral reef of a new reef or a new image of a similar reef (Burns et 

al., 2022).  

 

Machine learning (ML) is a promising empirical technique used for supervised and unsupervised 

classification and regression of nonlinear systems. They can learn the basic behavior of a system from 

a set of training data without needing to know the details of the relationships between the data. A 

large "training data set" of examples is required to cover as much of the system parameter space as 

possible, and a second random subset of the data must be set aside for fully independent validation. 

This helps considerably in addressing challenges and problems for which many observations and 

other data are available but theoretical knowledge is still lacking (Lary et al., 2016), in this case, the 
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coral reef community. Machine learning classifications can be applied to the benthic composition of 

coral reefs to produce maps of the benthic community using pixel- or object-based image analysis 

approaches (Burns et al., 2022). 

 

The pixel-based method is a conventional method that has been used for mapping the benthic 

composition of coral reefs (Wahidin et al., 2015). Pixel-based mapping uses the spectral reflectance 

characteristics of each pixel to classify it as a benthic component of a benthic assemblage (i.e. corals, 

algae and sand). This algorithm thus works based on two assumptions. First, each individual pixel 

must be represented by only one benthic class, where the spatial resolution of the pixel is higher or 

similar to the target object. Second, the pixels representing each class must have similar spectral 

reflectance values (Burns et al., 2022).  

 

Although pixel-based image classification can provide results with moderate to high overall 

accuracy, diverse habitats with high spatial heterogeneity can lead to massing in mixed pixels where 

one pixel contains members of different benthic groups (Burns et al., 2022). This leads to a "salt-and-

pepper effect', where a single pixel is categorized differently from surrounding pixels because 

information from nearby pixels is not considered in the per-pixel classification (Oktorini et al., 2021). 

Furthermore, pixel redundancy can occur, i.e. many pixels reflect the same target feature, which is 

particularly noticeable in high-resolution satellite imagery (< 5 m) (when the spatial resolution is 

significantly finer than the target objects) (Wicaksono et al., 2019).  

 

Maximum Likelihood Classification (MLC) is the primary pixel-based machine learning technique 

used for mapping the benthic composition of coral reefs (Burns et al., 2022; Zhang, 2015).  

Nevertheless, the assumption for a normal distribution of the training dataset as a “requirement” for 

a good classification is difficult to fulfil in reality, especially with complicated benthic habitat 

conditions. In satellite imagery, the algorithm has been shown to classify macroalgae in the benthic 

composition of corals with low overall accuracy (Wicaksono et al., 2019). Likewise, the MLC algorithm 

consistently produced unsatisfactory results in categorizing coral benthic in acoustic side scan sonar 

data, with accuracies ranging from 31% to 39% and no regular trends in performance with increasing 

training size (Ierodiaconou et al., 2011). Thus, the MLC algorithm is used in comparison studies as a 

control or baseline to determine whether the use of alternative machine learning algorithms improves 

the accuracy and consistency of the maps produced (Wicaksono et al., 2019). 

 

Several studies have demonstrated significant improvement in the classification results of habitat 

maps using object-based non-parametric algorithms when multispectral image data is in use 

(Rusmadi & Hasan, 2020; Zhang, 2015). An object-based classification technique had the ability to 

increase object segmentation to accommodate fine spatial resolution data (Lu & Weng, 2007) by 

applying a multi-resolution segmentation algorithm for categorizing pixels to become similar objects 

into one structure and spectral in one structural, spectral, and additional spatial information like 

shape, texture, and contextual connection. Nevertheless, this also causes lower classification accuracy 

due to missing objects when bigger scale is applied (Rusmadi & Hasan, 2020; Wahidin et al., 2015). 

The scale parameter of OBIA decides the size of the output object and can be difficult to determine 

because semantically significant regions appear at different scales (Arbiol et al., 2007). Although 

methods have been developed to determine the ideal scale parameter, in most coral reef benthic 

mapping work using OBIA, the scale parameter is determined by subjective trial and error (Lyons et 

al., 2020; Roelfsema et al., 2018).  

 

Object-based SVM, RF and neural networks (NN) are some alternative machine learning 

algorithms that have shown to be promising at capturing the complex benthic composition and 
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achieving higher accuracy. The classification results vary depending on the existing benthic classes 

of in-situ conditions (Wicaksono et al., 2019). They have demonstrated the potential to be the best 

classifier in comparison studies.  

 

SVM uses the model based on maximizing the profit margin and is, therefore, able to produce 

good results on poor-quality samples without prior estimation of the statistical distribution, even on 

data with unknown distributions (Eugenio et al., 2015). The accuracy of the classifier often remains 

constant for satellite imagery, averaging 70% in most published studies (Nguyen et al., 2021). In 2015, 

SVM was shown to have a higher accuracy of 73% in producing benthic coral habitat maps than 

Random Tree, Bayesian, k-Nearest Neighbours (k-NN), and Decision Tree (DT) within 7 classes on 

Landsat 8 OLI satellite imagery (Wahidin et al., 2015). When high-resolution satellite imagery from 

WorldView-3 is combined with drone imagery, the accuracy of this classifier can reach 93% for 9 

different types of benthic habitats (Gray et al., 2018).  

 

Random Forest (RF) is a supervised classification ensemble approach that employs several 

decision trees and chooses training samples and variables at random. Due to its accurate classification 

results and fast processing times, especially when using high-dimensional remote sensing data, RF 

algorithms are increasingly used in remote sensing image classification (Belgiu & Drăgu, 2016), and 

benthic habitat maps with an overall accuracy of 60% to 85% (Ahmed et al., 2021; Lazuardi et al., 2021; 

Poursanidis et al., 2021; Wicaksono et al., 2019). The performance between SVM and RF classifiers for 

shallow water benthic mapping did not show significant difference. RF provides more consistent 

performance in terms of spatial distribution and similarity to field conditions compared to SVM 

(Lazuardi et al., 2021; Wicaksono et al., 2019). According to (Zhang, 2015), RF outperforms SVM by 

not more than 7% for 3 classes group-level classification, SVM produced the same accuracy as the RF 

classifier in identifying hardbottom and continuous seagrass, but yielded a lower accuracy in 

discriminating patchy seagrass. Another study by (Wicaksono et al., 2019) reported similar findings, 

while the overall accuracy of RF (71%) lags slightly behind SVM (73%) for 14 classes classification, 

misclassification of coral reefs and seagrass near the reef crest was evident in SVM results but not in 

RF results.  

 

The Artificial Neural Network (ANN) is another supervised classifier trained for multilayer feed-

forward networks, which is back-propagation. The back-propagation algorithm simultaneously 

modifies the network weights to reduce the discrepancy between the targets and the computed 

outputs. The processing is done in the forward direction, starting from the inputs, passing through 

the hidden layers and finally the output layers (Hassan-Esfahani et al., 2015). ANN is fault tolerance, 

infinite data correlation, parallel distributed information processing and a self-learning feature. These 

attributes facilitate ANN as an improved tool for categorizing remote sensing imagery. It was able to 

outperform MLC with an overall accuracy of 89.55% in coral reef detection using PlanetScope (Dung 

et al., 2023).  

 

As for its application to acoustic side scan sonar imagery, (Rusmadi & Hasan, 2020) has 

demonstrated that SVM was the only moderate classifier that achieved the highest accuracy of 81% 

among the other five algorithms tested, namely k-Nearest Neighbours (k-NN), Random Forest (RF), 

Decision Tree and Bayes, with accuracy ranging from 45% to 68%. In another work by (Febriawan, 

2020), SVM achieved the best overall accuracy (77%) when mapping riverbed habitats using a linear 

kernel, but using a Gaussian kernel does not seem to be suitable for the classification, providing only 

60% accuracy. Similar to satellite imagery, the study showed that SVM can better handle sparse 

training sets for side scan sonar data (Febriawan, 2020).  
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Each image classification method has its own set of strengths and weaknesses when it comes to 

classifying benthic habitats. It is advisable to use a Support Vector Machine (SVM) when dealing with 

sparse training datasets, opt for a Random Forest (RF) when the in-situ conditions are dominated by 

seagrass, or consider employing an ensemble approach that combines different algorithms to harness 

their complementary strengths in classifying various habitats, as demonstrated by (Zhang, 2015). 

 

 

FUTURE PROSPECTIVE  

Ongoing advances in the field of benthic habitat mapping offer promising opportunities to 

improve research and applications. The following suggestions, listed in Table 4, highlight key 

strategies that could drive the next phase of progress in benthic habitat mapping.  

Table 4. Prospects and strategies in the field of benthic habitat mapping. 

Prospects Strategies 

Integration of multi-

source data 

• Integrate high-resolution satellite imagery with UAV-based surveys to 

map benthic habitats, incorporating data from both shallow and deeper 

marine areas. 

• Utilize high frequency sonar technologies (e.g. multibeam 

echosounders) for detailed topographic mapping and better 

delineation of benthic habitats, including identification of seabed 

features and habitat types. 

• Use eDNA sampling techniques to assess biodiversity and habitat 

conditions at small spatial scales to gain molecular insights into benthic 

community composition. 

• Improve GIS-based modelling by incorporating environmental 

variables (e.g. temperature, salinity, substrate composition) to produce 

more accurate habitat maps and predict future changes in benthic 

ecosystems. 

• Establish regional or global databases that integrate habitat mapping, 

biodiversity data and human impact assessments to support large-scale 

conservation and restoration initiatives. 

Machine learning and 

artificial intelligence 

(AI) for data analysis 

• Develop AI algorithms to automate benthic habitat classification from 

multi-source datasets (e.g. sonar data, satellite imagery and field 

observations) to reduce the labor-intensive manual classification 

process and improve data processing efficiency. 

• Use machine learning to predict habitat distribution based on 

environmental variables to improve the accuracy of habitat maps and 

enable more effective conservation planning. 

• Apply convolutional neural networks (CNNs) to sonar and image data 

to identify complex benthic features such as coral reefs or underwater 

vegetation that are difficult to recognize manually. 

Real-time mapping • Use autonomous underwater vehicles (AUVs) for real-time, high-

resolution habitat mapping, especially in challenging environments 

where traditional methods are limited (e.g., deep waters or areas with 

strong currents). 

• Use continuous monitoring systems to produce real-time benthic 

habitat maps to improve decision-making processes in the 

management and conservation of marine resources. 

Collaboration and data 

sharing 

• Increase collaboration between research institutions, government 

agencies and international organizations to facilitate the sharing of 

data, resources and methods. Such joint efforts can lead to the 

development of standardized mapping protocols and improved data 

consistency between regions. 
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• Develop open-access databases or platforms to enable seamless sharing 

of habitat maps and associated data to support informed policy 

making, conservation planning and education initiatives. 

• Involve local communities, stakeholders and citizen scientists in data 

collection to create comprehensive datasets for large, often remote or 

under-studied regions. 

• Involve coastal communities in habitat mapping through participatory 

mapping approaches to raise awareness and promote more effective 

conservation measures. 

 

 

 

CONCLUSION 

Advancements in image processing algorithms present significant opportunities for data fusion 

across various sensors, enhancing coral reef mapping. The ability to extract bathymetry and slope 

data from side-scan sonar offers considerable potential for optimizing coral mapping. Effective coral 

reef community mapping relies on integrating diverse datasets and applying appropriate 

classification techniques to bridge information gaps with precision. While classifier performance 

depends on study area and data quality, identifying the most effective classification method remains 

a challenge, particularly for less-explored integration strategies. Combining sonar and satellite data 

offers a promising direction for future benthic habitat mapping. Object-based detection and 

classification outperform pixel-based approaches in both satellite and sonar data. Additionally, 

utilizing Support Vector Machine (SVM) classifiers for poor-quality or limited datasets, Random 

Forest (RF) for seagrass-dominated reefs, or ensemble classifiers for diverse habitats can improve 

mapping accuracy. 
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