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ABSTRACT Driver fatigue is one of the major causes of road accidents. While numerous electroencephalography (EEG) 
related methodologies have been proposed for automatic fatigue detection, very little attention has been given to explore 
the use of EEG in the estimation of the prediction horizon of driver fatigue. This paper proposed a novel framework based 
on the similarity score measured by the Euclidean distance in the brain oscillatory rhythmic patterns to determine how far 
ahead the decrement in driver’s vigilance could be detected. A new metric for the confidence level of the estimation was 
also suggested to quantify prediction reliability. The proposed framework was assessed using the data from a driving 
simulation experiment involving 20 healthy female subjects with mean age of 22 and found that the prediction horizon can 
be extended up to 56s solely based on EEG features. In conclusion, this study demonstrated how the EEG features can be 
used for the estimation of prediction horizon in driver fatigue management.  
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INTRODUCTION 

Continuous intensive driving without a break demands a significant amount of physical and 

mental resources that can eventually lead to driver fatigue (Getzmann et al., 2018). Fatigue reduces 

the driver’s vigilance and subsequently impairs their abilities in controlling the vehicle (Kong et al., 

2017). According to the National Highway Traffic Safety Administration of the United States (US), 

fatigued driving is associated with 100,000 crashes in the US, leading to over 1,500 deaths and 71,000 

injuries each year (NSF, 2024).  

 

Prediction horizon is defined as the time window starting from the detection of a fatigued state in 

the driver to the onset of the road accident. Within the context of accident prevention, a longer 

prediction horizon is desirable so that drivers have adequate lead time in taking the necessary 

intervention measures. In two published studies, several vehicle variables were utilized as a feature 

set for the driver fatigue detection system to predict unintentional lane departure by 0.2-0.6s 

(Ambarak et al., 2017), and 60s (McDonald et al., 2013) in advance, albeit at an area under the receiver 

operating characteristic curve of 0.7. In a study by Murata, correlation and regression analysis linked 

the changes of physiological factors including electroencephalography, heart rate, and eye movement 

with behavioural (neck bending angles, foot pressure, and back pressure) to achieve 20s of prediction 

horizon (Murata, 2016).  

 

Electroencephalograph (EEG) oscillatory activity reflects thalamocortical activity in the brain 

(Olbrich et al., 2014). Our previous study (Radzi et al., 2019) confirmed that the EEG power spectrum 

is a reliable marker for distinguishing between alert and fatigued driving states. Building on this, the 
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present study revisited the same dataset and represents the first attempt to use EEG signals for 

estimating prediction horizons. We proposed a novel framework employing a Euclidean distance-

based similarity score, calculated between non-overlapping EEG features at various time windows 

and the time window of road excursion onset. Kernel density estimation was used to model the 

similarity score, yielding a "confidence level" metric. This framework was tested using data from a 

driving simulation experiment to identify EEG features across brain regions and frequency band 

ratios that provide the longest prediction horizon. 

 

 

BACKGROUND THEORY 

 

Similarity Between Two Time Windows  

This study aimed to examine the similarity in the neural oscillatory patterns between the preceding 

event and the road excursion onset windows as a potential means to estimate the prediction horizon. 

By comparing with the road excursion onset, the similarity score could be a useful indicator of the 

starting point of the vigilance decrement. Based on this concept, the Euclidean distance method was 

used to measure similarity between two-time windows. This method measured the geometric 

distance between two points (neural oscillatory parameters). In a Euclidean plane, if m  =  (xp,  yp) 

and 𝑛  =  (xq,  yq), the distance could be computed using Equation (1) (Liberti et al., 2014). 

 

                                                𝑑(𝑚, 𝑛) = √(𝑥𝑝 − 𝑥𝑞)
2

+ (𝑥𝑝 + 𝑥𝑞)
2
                                                       (1) 

 

Then, the distance values can be normalized using unity-based normalization to restrict the range of 

values between 0 and 1 which is written as 

 

       𝑑̂ =
𝑑−𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
                                                                             (2) 

 

Using Equation (3), the normalized distance values were transformed into similarity values, denoted 

as 𝑑̂ . Generally, the higher the 𝑑̂ value is, the more likely the mental state at that particular time 

window is showing a higher similarity to that of the road excursion onset window. 

 

             𝑑̂= 1 − 𝑑̂                                                                                 (3) 

 

As this study only aimed to identify whether there was a high or low similarity, the value was then 

binarized. This was calculated by applying a threshold (𝑇𝑏) to all the similarity values. In other words, 

only similarity values larger than 𝑇𝑏 (i.e., high similarity value) would be categorized as ’1’ (thereafter, 

they were labeled as ’case’). Otherwise, they were removed from subsequent processes. Binarization 

not only reduces individual differences and improves the generalization, but it also allows easier 

interpretation of similarities between windows. 

 

By using the window with label 𝑊0 as the referencing window, the aforementioned process was 

repeated between the referencing window 𝑊0 against each of the preceding window W−264, 𝑊−260, 

𝑊−256, ..., 𝑊−4 for each epoch and each participant. For simplicity, throughout this paper, the 

comparison between 𝑊0 against each of the preceding window 𝑊−264, 𝑊−260, 𝑊−256, ..., 𝑊−4  would 

be abbreviated as time 264s, 260s ,256s, ... ,4s, respectively. 

 

Preliminary analysis showed that, as expected, the cases were unevenly distributed due to 

variability among subjects. In order to better identify the most common time instance of detecting 
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EEG patterns similar to those at events of interest (road edge excursion) amidst the variability among 

subjects, we need to model the histograms of the cases. Here, we proposed to use Kernel Density 

Estimate (KDE), which is a non-parametric method, to smoothen and model the probability density 

of the binary data. The modelling can be achieved by overlaying an identified density function (the 

kernel) across the binary data to generate smooth histograms that preserve important density features 

at multiple scales. Let 𝑋 be a random variable and the random sample {X1,...,𝑋𝑛}, then the density 𝑓(𝑥) 

can be calculated as 

 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝑘 (

𝑋𝑖−𝑥

ℎ
)𝑛

𝑖=1                                                                          (4) 

 

where ℎ is the bandwidth that controls the degree of smoothing, 𝑘(𝑢) is a kernel function, and this 

study employs the gaussian kernel. The estimator 𝑓(𝑥) represents the total observations around the 

point 𝑥. Such that, 𝑓(𝑥) is having a higher value if there is a higher number of observations around 𝑥, 

and a lower value of f̂(x) when there is only a few 𝑋𝑖 near the 𝑥. 

 

Evaluation Of Prediction Horizon 

In addition to modeling prediction horizons, this study also aims to investigate which pair of 

electrode and frequency band ratio that could provide the furthest prediction horizon. In particular, 

we are more interested in obtaining a range of potential prediction horizon for each of the electrodes 

and frequency bands ratio, instead of extracting singular value. To be able to make comparisons, a 

metric must be developed to quantify the quality of the prediction horizon. Thus, we proposed a new 

metric 𝑅𝑑𝑎𝑡𝑎 that denoted as the ratio of the sample count (𝑚) within a specific sigma level against the 

total number of samples (𝑛). The 𝑅𝑑𝑎𝑡𝑎 helped determine the best channel-feature pair that provided 

the best prediction horizon range. Sigma (𝜎) level was akin to the standard deviation in between the 

peak of the density distribution, or in other words, the prediction horizon dispersion. 

 

For simplicity, we set each 𝜎 to be a one time-window, i.e. 4s. As shown in Figure 1, the sigma level 

of two (2σ) indicated the prediction horizon range to be two time-windows from the highest peak to 

the lower (152s) and upper (136s) time series respectively. Let {𝑋1, … , 𝑋𝑛} be a set of finite data 

samples, and the samples within an enclosed sigma level are {𝑋1, … , 𝑋𝑚}, then 𝑅𝑑𝑎𝑡𝑎 can be obtained 

as using Equation (5). 

Rdata =
m

n
                                                                                            (5) 

 

 
Figure 1. Illustration of different sigma levels from the peak 144s. Sigma level of two indicates that the 

prediction horizon range is two levels from the peak to the lower (144s to 152s) and upper (144s to 

136s) limits respectively. 
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METHODOLOGY 

 

EEG Dataset 

The dataset contained electrophysiological data from 32 healthy subjects (28 females and four 

males) with a mean age of 22 years old. The study was approved by the Universiti Teknologi MARA 

Research Ethics Committee and all the subjects provided informed consent before participating in the 

study. The study involved the collection of continuous measurements during a simulated session in 

which the participants were required to keep the vehicles at the center of the road as accurately as 

possible at a constant driving speed. At the instance the vehicle drifted beyond the edge of the road, 

the participant was instructed to make corrective steering adjustments to return to the centre of the 

road. The road edge excursion event during the sustained-attention driving task was logged into the 

STISIM software. The EEG signals were recorded using a 64-channel EEGOSPORTS (ANT Neuro, 

Hengelo, Netherlands) with 17 active electrode positions at 𝐹𝑝1, 𝐹𝑝2, 𝐹𝑝𝑧, 𝐹3, 𝐹𝑧, 𝐹4,𝐶3, 𝐶𝑍, 𝐶4, 𝑃3, 𝑃𝑍, 𝑃4, 

𝑇7, 𝑇8, 𝑂1, and 𝑂2. All the EEG electrodes were referred to the 𝐶pz and placed in accordance with a 

modified International 10–20 system of electrode. For the purposes of this manuscript, only the 

dataset from 20 females was utilized in the analysis, as provided and permitted by the data owner. 

 

Segmenting Epochs of Interest 

The onset of crossing a road edge was used as the reference point to identify the instance at which 

the event of interest occurs. These time instances were used as references to segment the continuous 

time-series EEG signals into epochs of 270s. Specifically, each epoch referred to the period of 270s 

preceding a road edge excursion event. The choice of using 270s as the epoch size was based on the 

finding that a driver’s vigilance fluctuated within a cycle length of greater than 240s (Makeig et al., 

1993). Also, this value was selected to maximize the number of the epochs for analysis while ensuring 

no overlapping between two road edge excursion events within the same time-series data. 

 

Prior to segmenting the time series into epochs, the EEG data were band-pass filtered (1-50 Hz) 

and down-sampled to 200Hz to improve the signal-to-noise ratio and to reduce the dimensionality of 

the data. Bad channels in the recordings were removed using the Autoreject module. This was 

followed by an independent component analysis (ICA) to remove any components that correlated 

strongly with eye movements and muscle artifacts. In addition, noisy channels were also flagged and 

ameliorated using the Autoreject module. 

 

The continuous time series was segmented into a series of 67 temporal windows of 4s length each 

without overlapping. The choice of window length was based on previous studies in which the 

duration of 10-16 cycles for the lowest EEG band (for θ band, about 4s) was accepted as an adequate 

choice to capture the dynamic of fast and slow brain rhythms (Dimitriadis et al., 2017). Each of the 

windows was assigned with a label, with the window closest and furthest to the event onset labeled 

as 𝑊0 and 𝑊−256 respectively. The relative power for three standard frequency bands, namely θ (3–7 

Hz), α (8 – 13Hz), and β (14–30Hz), for each of the temporal windows were calculated via fast Fourier 

transform. Then, the ratio indices were calculated from the three standard frequency bands for each 

of the temporal windows. The 𝛼/𝜃 and (𝜃 +  𝛼)/ 𝛽 were selected for their known sensitivity to the 

change of driving fatigue. It should be note that, the 𝛼/𝜃 and (𝜃 +  𝛼)/ 𝛽 were sometime referred as 

TA and TAB, respectively in the following text. 

 

 

RESULT  

In this study, the parameter 𝑇𝑏 and sigma level played an important role in determining the 

outcome of the prediction horizon analysis. The selection of 𝑇𝑏 was directly related to the sensitivity 
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and specificity of the detection of vigilance decrement. Clearly, if 𝑇𝑏 was higher, then the evaluation 

would be more specific to the similarity between the corresponding windows. The sigma level 

selection might affect how wide the prediction horizon range around the average prediction horizon 

would be. Narrow sigma level means the proposed prediction horizon range is based on data points 

that are clustered closely around the density distribution peak. In contrast, a wide sigma level refers 

to wider prediction horizon range which might include possible outliers. We first investigated the 

performance and pattern of 𝑅𝑑𝑎𝑡𝑎 with varying 𝑇𝑏 (0.90-0.99 with step size of 0.01) and sigma levels 

(1-30 with step size of 1). In most of the channel-feature pairs, no substantial changes in 𝑅𝑑𝑎𝑡𝑎 was 

found when increasing the 𝑇𝑏 by 0.01 unit while keeping the sigma level constant. This suggests that 

most of the channel and feature pairs have a similarity value higher than 0.99. On the other hand, 

varying the sigma level while maintaining the 𝑇𝑏 resulted in a proportional increase of 𝑅𝑑𝑎𝑡𝑎 value. 

This is because widening the sigma level means a larger sample number (data points) within the area 

under the sigma level while the total sample is maintained. In view of this observation, the values for 

𝑇𝑏 and sigma level were selected to be 0.99 and 15 (half of the sigma evaluation range), respectively, 

for the subsequent analysis. 

 

Considering a total of 16 channels and two features, there was a total number of 32 channel-feature 

pairs. It might be useful to examine the top five channel feature pairs and to sort the performance 

results in descending order with the highest 𝑅𝑑𝑎𝑡𝑎 value on the top of the list which is shown in Table 

1. The top five electrodes (channels) were 𝑂2, 𝐹4, 𝑇8, 𝑃4, and 𝑃3. The experiment results suggested that 

the 𝑂2-TA (𝑅𝑑𝑎𝑡𝑎 = 0.58228) was the best channel-pair with the highest 𝑅𝑑𝑎𝑡𝑎 value, followed by 𝐹4-

TA (𝑅𝑑𝑎𝑡𝑎 = 0.51685) and 𝑇8-TAB (𝑅𝑑𝑎𝑡𝑎 = 0.49180) channel-pair. The result also indicated that the 

variation of 𝑅𝑑𝑎𝑡𝑎 magnitude across the five top-ranked channel-feature pairs was little, except for the 

top two channel-pair. On the contrary, the peak of the prediction horizon showed a substantial 

variation in performance across the five top-ranked channel-feature pairs with the lowest and highest 

prediction horizon peaks of 52s and 100s respectively. In terms of prediction horizon range, 𝑃3-TA 

(𝑅𝑑𝑎𝑡𝑎 = 0.48438) gave the furthest range of 100s, followed by 𝑃4-TA (𝑅𝑑𝑎𝑡𝑎= 0.48649), and 𝐹4-TA (𝑅𝑑𝑎𝑡𝑎 

= 0.51685), with the peak prediction at 84s and 80s, respectively. Despite being the two top channel-

feature pairs, both 𝑂2-TA and 𝐹4-TA, each provided a prediction horizon of 56s (𝑅𝑑𝑎𝑡𝑎 = 0.58228), and 

80s (𝑅𝑑𝑎𝑡𝑎 = 0.51685), respectively. 

 

Table 1. Five top-ranked channel -feature pairs sorted according to the 𝑅𝑑𝑎𝑡𝑎 in descending order. 
 

 

 

 

 

 

 

 

 

In this study, the initial assumption was that the similarity (𝑆̂) magnitude would be increased 

toward the accident onset. This assumption can be visualized clearly via the overlay of the histogram 

and KDE plot. As shown in Figure 2a for the 𝑂2-TA pair, the frequency and density of event between 

the 264s to 104s prediction horizon were lower, as expected. Subsequently, there was a sharp increase 

in the frequency and density of events from 104s to 64s. Finally, the number of frequencies of event 

remained stable towards the accident onset. In contrary, the density distribution displayed a decrease 

from 64s towards accident onset. Such decrease behaviour at the end of the continuum is expected 

since the weight of the Gaussian kernel values decreases with distance from the central. A similar 

No Ch Feature 𝑹𝒅𝒂𝒕𝒂 𝑳𝒊𝒎𝑳𝒐𝒘(𝒔) 𝑳𝒊𝒎𝑼𝒑𝒑𝒆𝒓(𝒔) Peak (s) 

1 𝑂2 TA 0.58228 100 12 56 

2 𝐹4 TA 0.51685 124 36 80 

3 𝑇8 TAB 0.49180 96 8 52 

4 𝑃4 TA 0.48649 128 40 84 

5 𝑃3 TA 0.48438 144 56 100 
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pattern was also displayed by the 𝑇8-TAB pair (Figure 2b) whereby there was an increase in the 

number of frequencies from 264s to 104s, followed by relatively stable number of the events between 

104s to 24s, and finally accompanied by a steep increased number of events from 24s to 4s. The density 

distribution showed a bi-modal behaviour but with a progressive increased density as the prediction 

horizon progress closer to the accident onset and reach the highest peak density at 52s. The stark 

difference between the plots in Figure 2a and Figure 2b is the number of events covered under the 

highest peak of each plot, 56s, and 52s, respectively. The number of events under the highest peak 

reflects the confidence level (hence, the 𝑅𝑑𝑎𝑡𝑎 magnitude) in such prediction horizon. 

 

 
Figure 2. Overlay of histogram and KDE plot for the (a) 𝑂2-TA and (b) 𝑇8-TAB pair. The histogram is 

represented by rectangles, while the red dashed line denotes the corresponding KDE plot. 

 

 

DISCUSSION 

Sustained cognitive attention involves multiple cortical and subcortical brain regions. The frontal 

region plays a major role in coordinating executive functions; the central and parietal regions are 

involved in sensory activities; the temporal region coordinates specific functions including visual 

memory, verbal memory, and auditory tasks, whereas the occipital region is involved in visual 

information reception. Table 1 lists the top five channel-feature pairs. Interestingly, multiple brain 

regions including dorsolateral prefrontal cortex (F4), temporal (T8), parietal (P3 & P4), occipital (O2) 

were all listed in the top five list. These regions are consistent with the strategy employed by multiple 

studies that relied upon electrode placement at the regions such as frontal (Kartsch et al., 2018), 

occipital (Kartsch et al., 2018), and central (Qian et al., 2017) as the main brain regions for the 

development of automatic mental driving fatigue detection. 

 

In terms of the Rdata, O2-TA scored the highest value. In (Chuang et al., 2015), an increased alpha 

and theta power was detected in the occipital region with the increasing fatigue level. It is known that 

alpha oscillation in the occipital cortex amplifies significantly during eye closure and decreases during 

eye-opening. Hence, there is probably a similar amplitude of eye closure and fatigue level before the 

onset of an accident. The result showed that the pair F4-TA with the peak prediction range of 196s 

displayed the second highest value of Rdata. The importance of the F4-TA pair coincided with another 

study (Zhao et al., 2011) that reported a significant TA increase on the F4 with an increasing fatigue 

level. 
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As discussed in the introduction, several studies addressed the prediction horizon. Among the 

studies, only one of the studies (Murata, 2016) employed the EEG feature in their methodology. 

Despite utilizing a multimodal input, the system only achieved 20s of the prediction horizons. Among 

the remaining studies, the framework proposed by Larue et al. (2015) achieved the longest prediction 

horizon of up to ten minutes with a one-minute increment. Our study utilized only EEG features and 

reported the peak of the prediction horizon varied with the highest and lowest prediction horizon 

peak of 100s and 52s respectively. 

 

This study has several limitations that warrant consideration. First, the use of a driving simulator, 

while ensure a controlled environment, but does not fully represent a real-world driving condition, 

such as varied road environments and external stressors that may influence the generalizability of the 

findings. Additionally, the participant sample may lack diversity in terms of age and gender which 

subsequently limiting the applicability of the results across different populations. Moreover, the 

computational complexity of the proposed framework, involving extensive preprocessing and 

analysis steps, presents an obstacle for a real-time implementation in onboard systems with limited 

processing power. Addressing these limitations in future research will be essential for broader 

application and validation of the findings. 

 

Future research should prioritize real-world validation studies to test the proposed EEG-based 

fatigue prediction framework under natural driving conditions. Apart from that, future study may 

incorporate diverse driving environments inclusive varying road types, weather conditions, and 

traffic scenarios, as well as involving participants from broader demographic groups to ensure 

generalizability. Additionally, cross modality fusion between the EEG with other fatigue detection 

methods, such as heart rate variability, eye tracking, or behavioural monitoring may create a robust 

multimodal system. This approach would leverage the complementary strengths of each modality 

and therefore increase the system's reliability. 

 

 

CONCLUSION 

This paper explored the ability of EEG features to predict driver fatigue ahead of road accidents. 

The study aim was achieved via the newly proposed novel framework based on the Euclidean 

distance method and kernel density estimation integrated with the sigma level. The analysis showed 

that EEG power spectral ratio coupled with appropriate electrode placement could inform the driver’s 

performance decrement as early as in between 56s before the onset of an accident. Furthermore, this 

paper offered a new research perspective about the EEG prediction horizon within the transportation 

domain and extended the requirement for real-time automated EEG-based fatigue detection. 
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