Resin profile of gaharu stands in research plantation sites using the Aggregated Assessment Index (IV)

Richard Joseph Majapun; Chen Thau En; Ian Brandon John; Mohd Jumri Abd. Hamid; Pang Kat Nyen Kelvin.

Transactions on Science and Technology, 11(4), 214 - 227.

Back to main issue

ABSTRACT
This study evaluated resin formation in Aquilaria malaccensis Lamk. and Aquilaria beccariana Tiegh. plantations in Sabah, Malaysia. Non-destructive methods based on colour and fragrance assessments using the Aggregated Assessment Index (IV) were applied to examine the effects of inoculation segmentation, location, diameter at breast height (DBH), and stand age on resin profiling. A total of 70 trees, aged 7 to 29 years, were assessed across multiple research plantation sites within the Forest Reserves (FR.), with resin inducement carried out by drilling segmented holes and applying locally sourced inoculum. Results after six months showed that inoculation segmentation had minimal impact on resin formation, with slightly higher resin formation found in the middle section for Aquilaria beccariana compared to Aquilaria malaccensis, though differences were not statistically significant. Resin formation varied by location, with older trees at Segaliud Lokan FR. and Sook FR. producing slightly more resin index than younger trees at Mile 9 and Gum-Gum FR. However, the Kruskal-Wallis H test confirmed that the IV index across locations were not statistically significantly in resin formation. Stand age showed a slightly stronger correlation with resin formation (rs = 0.24, p = 0.043) than DBH (rs = 0.17, p = 0.166), though both were weak predictors. These findings suggest that resin formation is generally associated by multiple factors beyond tree size and age, including environmental conditions, genetics, and management practices. Despite the limitation of the IV method, it provides a useful baseline for resource-limited settings, with the potential for refinement through detailed grading with modern methods at later stages.

KEYWORDS: Aquilaria malaccensis; Aquilaria beccariana; aggregated assessment Index; non-destructive; resin profiling.



Download this PDF file

REFERENCES
  1. Adi, D. S., Hwang, S. W., Pramasari, D. A., Amin, Y., Widyaningrum, B. A., Darmawan, T., Septiana, E., Dwianto, W. & Sugiyama, J. 2020. Spectral observation of agarwood by infrared spectroscopy: The differences of infected and normal Aquilaria microcarpa. Biodiversitas Journal of Biological Diversity, 21(7), 2893-2899.
  2. Azah, M. N., Husni, S. S., Mailina, J., Sahrim, L., Majid, J. A., & Faridz, Z. M. 2013. Classification of agarwood (gaharu) by resin content. Journal of Tropical Forest Science, 25(2), 213-219.
  3. Azren, P. D., Lee, S. Y., Emang, D. & Mohamed, R. 2019. History and perspectives of induction technology for agarwood production from cultivated Aquilaria in Asia: a review. Journal of Forestry Research, 30, 1-11.
  4. Blanchette, R. A. & Van Beek, H. H. 2005. Cultivated agarwood. U.S. Patent No. 6,848,211.
  5. Chakrabarty, K., Kumar, A. & Menon, V. 2015. Trade in Agarwood. TRAFFIC; New Delhi, India.
  6. Chong, S. P., Osman, M. F., Bahari, N., Nuri, E. A., Zakaria, R. & Abdul Rahim, K. 2015. Agarwood inducement technology: A method for producing oil grade agarwood in cultivated Aquilaria malaccensis Lamk. Journal of Agrobiotech, 6, 1–16.
  7. Faizal, A., Azar, A. W. P., Turjaman, M. & Esyanti, R. R. 2020. Fusarium solani induces the formation of agarwood in Gyrinops versteegii (Gilg.) Domke branches. Symbiosis, 81, 15-23.
  8. Gibson, I. A. S. 1977. The role of fungi in the origin of oleoresin deposits (agaru) in the wood of Aquilaria agallocha Roxb. Bano Biggyan Patrika, 6, 16-26.
  9. Hamdan, M. S. M., Ismail, M. A. H., Shaarani, S. H. N. & Tajuddin, S. N. 2021. Study on Soil Properties towards Formation of High Quality Agarwood Resin in Aquilaria crassna. Materials Science Forum, Trans Tech Publications Ltd., 1025, 110-115.
  10. Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1–9.
  11. Hamzah, A. M. A., Karim, M. A., Wong, H. L., Hambali, K. A., Yusoff, M. M., Amaludin, N. A., Leong, M. C., Abas, M. A., Hassin, N. H., Ismail, L. & Amir, A. 2021. Effect of organic amendments on the growth of Gaharu (Aquilaria malaccensis). IOP Conference Series: Earth and Environmental Science, 842(1), 012078.
  12. Hashim, Y. Z., Kerr, P. G., Abbas, P. & Mohd Salleh, H. 2016. Aquilaria spp. (agarwood) as a source of health beneficial compounds: A review of its traditional use, phytochemistry, and pharmacology. Journal of Ethnopharmacology, 189, 331-360.
  13. Herath, H. M. W. A. I. & Jinendra, B. M. S. 2023. Recent advancement in agarwood induction technology: a comprehensive review for the transformation of artificial agar resin induction methods. Journal of Agro-Technology and Rural Sciences, 3(1), 6-17.
  14. Huang, M., Ma, S., Qiao, M., Fu, Y. & Li, Y. 2023. Quality similarity between induced agarwood by fungus and wild agarwood. Journal of Agricultural and Food Chemistry, 71(42), 15620-15631.
  15. Jabatan Perhutanan Semenanjung Malaysia (JPSM). 2015. Manual Penggredan Gaharu. Taman Lestari Perdana: Alamedia Sdn. Bhd. ISBN 978-967-0539-27-0
  16. Jalil, A. M., Abdul-Hamid, H., Anwar-Uyup, M. K., Md-Tahir, P. & Mohd-Razali, S. 2022. Assessment of the effects of artificial fungi inoculations on agarwood formation and sap flow rate of Aquilaria malaccensis Lam. using sonic tomography (SoT) and sap flow meter (SFM). Forests, 13 (10), 1731.
  17. Jong, P. L., Tsan, P. & Mohamed, R. 2014. Gas chromatography–mass spectrometry analysis of agarwood extracts from mature and juvenile Aquilaria malaccensis. International Journal of Agriculture and Biology, 16, 644–648.
  18. Kao, W. Y., Hsiang, C. Y., Ho, S. C., Ho, T. Y. & Lee, K. T. 2018. Chemical profiles of incense smoke ingredients from agarwood by headspace gas chromatography-tandem mass spectrometry. Molecules, 23(11), 2969.
  19. Lee, S. S., Mohamed, R. & Hamzah, E. 2016. Chemical profiling and quality grading of agarwood (Aquilaria malaccensis) oil using gas chromatography–mass spectrometry (GC-MS). Molecules, 21(3), 278.
  20. Li, J., Yu, L., Liang, Y., Lan, B., Chen, Y., Wang, Q. & Wu, Z. 2024. Chemical analysis of different parts from agarwood columns by artificially agarwood-inducing method based on GC–MS and UPLC-TOF-MS. Fitoterapia, 178, 106156.
  21. Lim, H. F., Mamat, M. P. & Chang, Y. S. 2007. Production, use, and trade of gaharu in Peninsular Malaysia. Proceedings of the International Economic Conference on Trade & Industry. December 2007, Universiti Utara Malaysia. pp 1–10.
  22. Liu, Y. Y., Wei, J. H., Gao, Z. H., Zhang, Z. & Lyu, J. C. 2017. A review of quality assessment and grading for agarwood. Chinese Herbal Medicines, 9(1), 22-30.
  23. Mazlan, M. & Dahlan, T. 2010. Pengredan dan Pemprosesan Gaharu. Proceedings of the National Agarwood Seminar: Seminar Kebangsaan dan Pameran Gaharu. Selangor, Malaysia.
  24. Naziz, P. S., Das, R. & Sen, S. 2019. The scent of stress: Evidence from the unique fragrance of agarwood. Frontiers in Plant Science, 10, 840.
  25. Nor Azah, M. A., Chang, Y. S., Mailina, J., Saidatul Husni, S., Nor Hasnida, H. & Nik Yasmin, Y. 2008. Comparison of chemical profiles of selected gaharu oils from Peninsular Malaysia. Malaysian Journal of Analytical Sciences, 12(2), 338-340.
  26. Pang, K. N. K., Lapongan, J. & Anuar, M. 2016. A note on the growth and resin production of Gaharu in Sook Forest Reserve, Sabah. Sepilok Bulletin, 23&24, 51-54.
  27. Persoon, G. A. 2008. Growing ‘the Wood of The Gods’: Agarwood production in Southeast Asia. In: Snelder D.J. & Lasco R.D. (Eds). Smallholder Tree Growing for Rural Development and Environmental Services. Berlin: Springer Science Business Media. pp 245–262
  28. Putri, R. H., Ibrahim, H. & Mohamed, R. 2017. Non-destructive sonic tomographic evaluation of Aquilaria malaccensis (agarwood) trees artificially induced with Fusarium solani. Wood Science and Technology, 51(3), 633-646.
  29. Ramlı, A. N. M., Yusof, S., Bhuyar, P., Amınan, A. W. & Tajuddın, S. N. 2022. Fungi mediated agarwood (A. malaccensis) production and their pharmaceutical applications: A systematic review. International Journal of Plant Based Pharmaceuticals, 2(2), 261-270.
  30. Sabah Forestry Department. 2015. Annual report 2015, Sabah Forestry Department, Sandakan (https://drive.google.com/file/d/1OQbVsh7bJeagHAIs4f31YWjCnaVuywWp/view). Last accessed 19 December 2024.
  31. Shivanand, P., Arbie, N. F., Krishnamoorthy, S. & Ahmad, N. 2022. Agarwood - the fragrant molecules of a wounded tree. Molecules, 27(11), 3386.
  32. Subasinghe S. M. C. U. P. & Hettiarachchi D.S. 2013. Agarwood resin production and resin quality of Gyrinops walla Gaertn. International Journal of Agricultural Sciences, 3(1), 357–362.
  33. Subasinghe, S. M. C. U. P., Hitihamu, H. I. D. & Fernando, K. M. E. P. 2019. Use of two fungal species to induce agarwood resin formation in Gyrinops walla. Journal of Forestry Research, 30, 721-726.
  34. Tran, Q. L. & Hoang, H. V. 2021. Profiling and quantification of sesquiterpenes in Aquilaria crassna using LC-MS for quality control of agarwood. Natural Product Communications, 16(10), 1-7.
  35. Turjaman, M., Hidayat, A. & Santoso, E. 2016. Development of agarwood induction technology using endophytic fungi. In: Mohamed, R. (Eds). Agarwood: science behind the fragrance. Springer Singapore. pp 57–71.
  36. Yagami, T., Matsunaga, K. & Takahashi, K. 2013. Evaluation of inoculation techniques for agarwood resin production. Asian Pacific Journal of Tropical Biomedicine, 3(2), 1-9.
  37. Yao, C., Qi, L., Zhong, F., Li, N. & Ma, Y. 2022. An integrated chemical characterization based on FT-NIR, GC–MS and LC-MS for the comparative metabolite profiling of wild and cultivated agarwood. Journal of Chromatography B, 1188, 123056.
  38. Zhang, X., Wang, L. X., Hao, R., Huang, J. J., Zargar, M., Chen, M. X., Zhu, F. Y. & Dai, H. F. 2024. Sesquiterpenoids in Agarwood: Biosynthesis, Microbial Induction, and Pharmacological Activities. Journal of Agricultural and Food Chemistry, 72(42), 23039 - 23052.