Reassessing Aedes albopictus oviposition: Influence of trap colour and water source

Azlinda Abu Bakar; Marni Darwisya Marhadi; Nurul Izzati Asrefendi.

Transactions on Science and Technology, 11(4), 199 - 206.

Back to main issue

ABSTRACT
Aedes mosquitoes, the primary vectors of dengue, yellow fever, chikungunya, and Zika, remain a significant public health threat despite ongoing control efforts. Their adaptability to environmental changes has contributed to the continued rise in disease incidence. This study aims to evaluate and update the oviposition preferences of Aedes albopictus with respect to ovitraps colour and water sources across various sites at Universiti Sains Malaysia. The experiment tested five ovitraps colours: black, blue, green, orange, and red, alongside four water sources: rainwater, pond water, seasoned tap water, and distilled water. Over the study period, 2,640 eggs were collected, revealing significant differences (P<.05) in oviposition preferences for both ovitraps color (P = 0.012) and water source (P = 0.049). Black ovitraps attracted the highest number of eggs (672), followed by red (609), orange (410), blue (233), and green (190). Among the water sources, rainwater was most preferred (788 eggs), followed by pond water (725), seasoned tap water (630), and distilled water (497). Location 3 (School of Biological Sciences) recorded the highest egg count (972 eggs), although location differences were not statistically significant (P=0.434). Correlation analysis indicated a positive association between mosquito oviposition and water temperature (rs = 0.638; P = 0.047, P< .05). These findings highlight the importance of considering both ovitraps’ colour and water source in mosquito surveillance and control strategies, as these factors significantly influence the oviposition behaviour of Ae. albopictus. The results contribute valuable insights into optimizing ovitrap designs and selecting suitable water sources for more effective mosquito management in urban and suburban environments.

KEYWORDS: DAedes albopictus, oviposition preferences, ovitrap colour, water sources, vector control strategies



Download this PDF file

REFERENCES
  1. Ahmad-Azri, M., Syamsa, R. A., Ahmad-Firdaus, M. S. & Aishah-Hani, A. 2019. A comparison of different types of ovitraps for outdoor monitoring of Aedes mosquitoes in Kuala Lumpur. Tropical Biomedicine, 36(2), 335–347.
  2. Barrera, R. 2022. New tools for Aedes control: mass trapping. Current Opinion in Insect Science, 52, 100942.
  3. Dalpadado, R., Amarasinghe, D. & Gunathilaka, N. 2022. Water quality characteristics of breeding habitats in relation to the density of Aedes aegypti and Aedes albopictus in domestic settings in Gampaha district of Sri Lanka. Acta tropica, 229, 106339.
  4. David, M. R., Maciel-de-Freitas, R., Petersen, M. T., Bray, D., Hawkes, F. M., Mandela Fernández-Grandon, M., Young, S., Gibson, G. & Hopkins, R .J. 2023. Aedes aegypti oviposition-sites choice under semi-field conditions. Medical and Veterinary Entomology, 37(4), 683-692.
  5. Dusfour, I. & Chaney, S. C. 2022. Mosquito control: Success, failure and expectations in the context of arbovirus expansion and emergence. In: Hall, M., Tamïr, D. (Eds.). Mosquitopia: The Place of Pests in a Healthy World [Internet]. New York: Routledge. Chapter 14, PMID 36260721.
  6. Ferede, G., Tiruneh, M., Abate, E., Kassa, W. J., Wondimeneh, Y., Damtie, D. & Tessema, B. 2018. Distribution and larval breeding habitats of Aedes mosquito species in residential areas of northwest Ethiopia. Epidemiology and health, 40, e2018015.
  7. Figurskey, A. C., Hollingsworth, B., Doyle, M. S. & Reiskind, M. H. 2022. Effectiveness of autocidal gravid trapping and chemical control in altering abundance and age structure of Aedes albopictus. Pest Management Science, 78(7), 2931–2939.
  8. Hoel, D. F., Obenauer, P. J., Clark, M., Smith, R., Hughes, T. H., Larson, R. T., Diclaro, J. W. & Allan, S. A. 2011. Efficacy of Ovitrap Colors and Patterns for Attracting Aedes albopictus at Suburban Field Sites in North-Central Florida. Journal of the American Mosquito Control Association, 27(3), 245–251.
  9. Jung, S. H., Kim, D., Jung, K. S. & Lee, D. K. 2021. Color Preference for Host-Seeking Activity of Aedes albopictus and Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology, 58(6), 2446–2452.
  10. Khallaf, M.A. & Knaden, M. 2020. Insect Host Choice: Don’t Put All the Eggs in One Basket, Current Biology, 30(22), R1363-R1365.
  11. Kolimenakis, A., Heinz, S., Wilson, M. L., Winkler, V., Yakob, L., Michaelakis, A., Papachristos, D., Richardson, C. & Horstick, O. 2021. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit-A systematic review. PLoS Neglected Tropical Diseases, 15(9), e0009631.
  12. Marin, G., Mahiba, B., Arivoli, S. & Tennyson, S. 2020. Does colour of ovitrap influence the ovipositional preference of Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). International Journal of Mosquito Research, 7(2), 11–15.
  13. Nelson, M. J. 1986. Aedes aegypti: Biology and Ecology (https://iris.paho.org/handle/10665.2/28514). Pan American Health Organization, Washington, DC. Last accessed on 13 October 2024.
  14. Njila, H. L., Naanmiap, D. & Ombugadu, A. 2022. Assessment of water preferences by gravid female mosquitoes in the selection of oviposition sites. Biomedical Journal of Scientific & Technical Research, 45(1), 36078-36084.
  15. Njila, H. L., Sani, H. S., Ombugadu, A. & Tanko, N. S. 2023. Evaluation of Coloured Containers as Attractants to Gravid Mosquitoes for Oviposition. Trends in Technical & Scientific Research, 6(1), 555679.
  16. OECD. 2018. Taxonomy, description and distribution of the mosquito Ae. aegypti. In: Safety Assessment of Transgenic Organisms in the Environment, Volume 8: OECD Consensus Document of the Biology of Mosquito Aedes aegypti, OECD Publishing, 33 - 45.
  17. O'Neal, P. A. & Juliano, S. A. 2013. Seasonal variation in competition and coexistence of Aedes mosquitoes: stabilizing effects of egg mortality or equalizing effects of resources? The Journal of Animal Ecology, 82(1), 256–265.
  18. Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. 2009. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes and Infection, 11(14-15), 1177-1185.
  19. Tang, C. S., Lam-Phua, S. G., Chung, Y. K. & Giger, A.D. 2007. Evaluation of a grass infusion-baited autocidal ovitrap for the monitoring of Aedes aegypti (L.). Dengue Bulletin, 11, 131-149.
  20. Tedjou, A. N., Kamgang, B., Yougang, A. P., Wilson-Bahun, T. A., Njiokou, F. & Wondji, C. S. 2020. Patterns of Ecological Adaptation of Aedes aegypti and Aedes albopictus and Stegomyia Indices Highlight the Potential Risk of Arbovirus Transmission in Yaoundé, the Capital City of Cameroon. Pathogens, 9(6), 491.
  21. Waldock, J., Chandra, N. L., Lelieveld, J., Proestos, Y., Michael, E., Christophides, G. & Parham, P. E. 2013. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathogens and Global Health, 107(5), 224–241.
  22. World Health Organization (WHO). 2024. Vector-borne diseases (https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases). Last accessed on 13 October 2024.
  23. Yu, C., Huang, J., Ren, X., Fernández-Grandon, G. M., Li, X., Hafeez, M. & Lu, Y. 2021. The predatory bug Orius strigicollis shows a preference for egg-laying sites based on plant topography. PeerJ, 9, e11818.
  24. Zhang, K., Li, D., He, X., Xie, C. & He, H. 2022. Spatial Distribution and Sources of Organic Matter in the Surface Sediments of Fuxian Lake, SW China. Water, 15(4), 794.