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ABSTRACT Time-fractional diffusion equations (TFDEs) are widely used in modeling anomalous diffusion processes, which 
occur in various fields such as physics, engineering, and economics. These equations offer a more accurate representation 
of systems where classical diffusion models fall short, particularly in capturing memory and hereditary properties of 
materials. In this paper, we employ the Caputo finite difference approximation equation for TFDEs by applying a 
discretization scheme based on the second-order implicit finite difference and Caputo fractional derivative operator. To solve 
these equations numerically, the one-dimensional TFDEs are discretized using Caputo’s implicit finite difference 
approximation. The corresponding system of linear approximation equations is then solved using weighted point iteration 
methods, specifically Successive Overrelaxation (SOR) and Gauss-Seidel (GS). Three examples are provided to evaluate 
the performance of these iterative methods. The numerical results demonstrate that the SOR method requires fewer 
iterations and reduces computational time, proving to be more efficient compared to the Gauss-Seidel method.  
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INTRODUCTION  

Presently, many researchers have studied fractional differential equations (FDEs) and their 

application in various fields of physics, such as fractional kinetics (Cen et al., 2018), measurement of 

visco-elastic material properties (Xu & Xu, 2018), anomalous diffusion (Chen et al., 2015), fluid 

mechanics (Paliivets et al., 2021), and image processing (Khalid et al., 2020). Miller & Rose (1993), 

Podlubny (1999), Diethelm & Ford (2002), Diethelm (2010) and others have all worked on 

foundational works that solve fractional differential equations. Recent applications have included 

numerically solving several kinds of linear fractional differential equations. Apart from that, the area 

of research in time-fractional diffusion equations (TFDEs) has evolved as a useful mathematical tool 

for explaining time-fractional events where the derivative order is non-integer. This is due to the fact 

that it may produce superior models that capture non-classical occurrences for complex physical real-

world problems in particular cases (Rashid et al., 2021). Fractional operators are important for 

understanding a wide range of complicated mechanical and physical behaviors, as well as problem 

solving involving non-Markovian random walks (Ford et al., 2011), which involve systems with long-

term memory. However, there are significant practical difficulties in solving the related fractional 

differential equation. It should be noted that only a few fractional differential equations may be solved 

analytically using complex functions, such as the Mittag-Lefer function (Kurulay & Bayram, 2012), 

H-function (Kilbas et al., 2004), and Wright function (Wright, 1935). Therefore, various numerical 

algorithms for solving TFDEs have recently been developed, which appear to be better capable of 

dealing with the complexities of fractional-order equations. Recent works have used the reduced 

spline (RS) method based on a proper orthogonal decomposition (POD) technique (Ghaffari & 
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Ghoreishi, 2019), the Crank-Nicholson strategy employs the finite element approach (Ali et al., 2017). 

The following techniques have been proposed and discussed by researchers in the literature: An 

approach called Method for alternating segment explicit-implicit/implicit explicit parallel difference 

(Wu et al., 2018), a new method based on fractional finite differences (Zhang, 2009), the use of localized 

radial basis functions (RBFs) (Ford et al., 2011), and the application of the fractional differential 

quadrature (FDQ) method ((Yuste, 2006). Previously, other researchers have focused on the implicit 

scheme (Muhiddin et al., 2020) to discretize the TFDEs problem. They introduced the Caputo finite 

difference scheme and the Caputo fractional operator into the approximation equations, resulting in 

a linear system at each time step. Solving the TFDEs numerically leads to a large and sparse system 

of linear equations (SLEs), which requires iterative methods for efficient computation. While the 

Gauss-Seidel (GS) technique, belonging to the point iterative family, has a slow convergence rate, the 

Successive Over-Relaxation (SOR) iterative method has emerged as a prominent solution for 

addressing this problem (Young, 1973; Alibubin et al., 2018). 

 

Extensive research has been conducted in the literature to explore point iterative techniques for 

solving SLEs resulting from the discretization of differential equations with integer-order. However, 

there is limited research on the application of these methods to fractional differential equations 

(Sunarto et al., 2014; Alibubin et al., 2018). Currently, most of the existing work in this area has focused 

on utilizing the Caputo fractional derivative operator. Therefore, the purpose of this paper is to 

investigate the performance of the weighted point iteration family, namely SOR iterative method in 

solving time-fractional diffusion equations using Caputo's implicit finite difference approximation 

equation. Also, we have developed the GS iterative methods as a benchmark to compare and 

demonstrate the capabilities of the SOR approach. To evaluate the performance of the SOR method, 

we consider TFDEs defined as the target equations in our analysis as follows (Podlubny, 1999). 

 

 

subject to the following initial and boundary conditions 

 
𝑈(𝑥, 0) = 𝑈0(𝑥), 

and 
𝑈(𝑥, 𝑡) = 𝑓(𝑥) 

 

𝛾, 𝜌 and ∅ were arbitrary constants, and 𝑓(𝑥, 𝑡) was a known function, whereas 𝛼 is a parameter that 

refers to the fractional order of time derivative.  

 

 

PRELIMINARIES 

Before constructing the finite difference approximation of Equation (1), we introduce some basic 

definitions.  

 

Definition 2.1 The Riemann-Liouville fractional integral operator, 𝐽𝛼of order-𝛼 is defined as (Zhang, 

2009) 

Definition 2.2 The Caputo’s fractional partial derivative operator, 𝐷∝ of order -α is defined as (Zhang, 

2009) 

 
2( , ) ( , ) ( , )

( , ) ( , ), , , 00 12 2

d u x t d u x t du x t
u x t f x t x t T

dxdt dx


    = + + +     (1) 

𝐽𝛼𝑓(𝑥) =
1

 𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼−1

𝑥

0

𝑓(𝑡)𝑑𝑡,      𝛼 > 0, 𝑥 > 0. (2) 
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𝐷𝛼𝑓(𝑥) =
1

 𝛤(𝑚 − 𝛼)
∫

𝑓(𝑚)(𝑡)

(𝑥 − 𝑡)𝛼−𝑚+1

𝑥

0

𝑑𝑡,      𝛼 > 0. 
(3) 

with 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁, 𝑥 >. This study conducts a comparison between the SOR algorithm 

and the GS iterative method for solving Problem (1), which involves variable coefficients. To solve 

Problem (1) numerically, we establish numerical approximations using Caputo's derivative 

formulation, incorporating Dirichlet boundary conditions, and considering the non-local fractional 

derivative operator. The proposed approximation equation belongs to the category of unconditionally 

stable schemes. According to previous research, many studies have been done to demonstrate the 

efficiency of the SOR iterative method (Youssef, 2012; Youssef & Taha (2012); Alibubin et al. (2016). 

However, there is no SOR iterative that exists in the literature for solving the time-fractional diffusion 

problem especially combining the Caputo implicit finite difference scheme. As a result, this study 

compares the SOR iterative approach to the GS iterative method for solving Problem (1) with variable 

coefficients. 

  

By applying Problem (1), the solution domain is confined to a finite space domain, specifically 

within the range 0 ≤ 𝑥 ≤ 𝛼,with 0 ≤ 𝛼 ≤ 1, and the parameter α is associated with the fractional order 

of the space derivative. To obtain the solution, we consider the initial boundary conditions of Problem 

(1). 

 

𝑈(𝑥, 0) = 𝑈0(𝑥), and 𝑈(𝑥, 𝑡) = 𝑓(𝑥) 

 

where 𝑈0(𝑥), and f(x) are given functions. To formulate the discrete approximation to the time 

fractional derivative in Eq. (1), we consider Caputo’s fractional partial derivative of order 𝛼, defined 

by (Sunarto et al., 2018; Alibubin et al., 2024). 

𝛼𝑈(𝑥𝑖 , 𝑡𝑛)

𝑥𝛼
=

1

 𝛤(2 − 𝛼)
∫

2𝑈(𝑥𝑖 , 𝑡𝑛)

𝑥2

𝑡𝑛

0

(𝑡𝑛 − 𝑠)1−𝛼𝑑𝑠      
(4) 

 

The following is how the paper is organized: Section 2 provides an approximation formula for the 

fractional derivative as well as a numerical strategy for solving the TFDEs (1) using Caputo's implicit 

finite difference method. Section 3 contains the formulation of the SOR iterative method, while Section 

4 presents the numerical experiment and conclusions given in Section 5. 

 

 

CAPUTO’S IMPLICIT FINITE DIFFERENCE APPROXIMATION EQUATION 

In this section, we provide a concise overview of the discretization process for Problem (1). The 

formulation of Caputo's fractional partial derivative is represented by Equation (4), which 

corresponds to the first-order approximation approach. 

 

𝐷𝑡
𝛼𝑈𝑖,𝑛 ≅ 𝜎𝛼,𝑘 ∑𝜔𝑗

(𝛼)
(𝑈𝑖,𝑛−𝑗+1 − 𝑈𝑖,𝑛−𝑗)

𝑛

𝑗=1

 (5) 

where 

𝜎𝛼,𝑘 =
1

 𝛤(1 − 𝛼)(1 − 𝛼)𝑘𝛼
 

and 

𝜔𝑗
(𝛼)

= 𝑗1−𝛼 − (𝑗 − 1)11−𝛼 

 

Before discretizing Equation (1), we assume that the solution domain of the problem is uniformly 

partitioned. To achieve this, we consider positive integers m and n, which define the grid sizes in the 

space and time directions for the finite difference algorithm. These grid sizes are denoted as ℎ = ∆𝑥 =

http://tost.unise.org/
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𝛾−0

𝑚
 and 𝑘 = ∆𝑡 =

𝑇

𝑛
 respectively. Based on these grid sizes, we construct a uniformly divided grid 

network for the solution domain. The grid points in the space interval [0, 𝛾]are represented by the 

numbers 𝑥𝑖 = 𝑖ℎ,   𝑖 = 0,1,2,… ,𝑚. Similarly, the grid points in the time interval are labeled 𝑡𝑖 = 𝑗𝑘,
𝑗 = 0,1,2, … , 𝑛. The values of the function 𝑈(𝑥, 𝑡) at these grid points are denoted as 𝑈𝑖,𝑗 = 𝑈(𝑥1, 𝑡𝑗). 

Utilizing Eq. (5) and employing the implicit finite difference discretization scheme, we obtain the 

Caputo’s implicit finite difference approximation equation of Problem (1) for the grid point centered 

(𝑥𝑖, 𝑡𝑗) = (𝑖ℎ, 𝑛𝑘). This equation is expressed as follows: 

 

𝑖 = 1,2, … ,𝑚 − 1 
 

The obtained approximation equation, referred to as Caputo's implicit finite difference 

approximation equation, exhibits consistent first-order accuracy in time and second-order accuracy 

in space, as stated in Eq. (6). It should be noted that the form of this approximation equation can be 

adjusted based on the selected time level. For instance, let’s consider the case where 𝑛 ≥ 2: 

 

𝜎𝛼,𝑘 ∑𝜔𝑗
(𝛼)

(𝑈𝑖,𝑛−𝑗+1 − 𝑈𝑖,𝑛−𝑗) = (
𝛾

ℎ2
−

𝜌

2ℎ
)𝑈𝑖−1,𝑛 + (∅ −

2𝛾

ℎ2
) 𝑈𝑖,𝑛 + (

𝛾

ℎ2
+

𝜌

2ℎ
)𝑈𝑖+1,𝑛 + 𝑓𝑖,𝑛

𝑛

𝑗=1

 

∴ 𝜎𝛼,𝑘 ∑𝜔𝑗
(𝛼)

(𝑈𝑖,𝑛−𝑗+1 − 𝑈𝑖,𝑛−𝑗) = 𝛽0𝑈𝑖−1,𝑛 + 𝛽1𝑈𝑖,𝑛 + 𝛽2𝑈𝑖+1,𝑛 + 𝑓𝑖,𝑛

𝑛

𝑗=1

 

where 

𝛽0 =
𝛾

ℎ2
−

𝜌

2ℎ
, 𝛽1 = ∅ −

2𝛾

ℎ2
, 𝛽2 =

𝛾

ℎ2
+

𝜌

2ℎ
 

 

Finally, we get for 𝑛 = 1,𝜔𝑗
(𝛼)

= 1 

 

The approximation Equation (7) can be rewritten as follows. 

 

where 
𝑝𝑖 = 𝜎𝛼,𝑘 − 𝛽0,   𝑞𝑖 = −𝛽1,    𝑟𝑖 = 𝜎𝛼,𝑘 − 𝛽2,  𝑓𝑖,1

∗ = 𝑓𝑖,1 − 𝜎𝛼,𝑘,    

 

Again, Equation  (8) can be expressed in a matrix form as  

 

where 

𝐴 =

[
 
 
 
 
 
 

𝑞 −𝑟

−𝑝 𝑞 −𝑟

−𝑝 𝑞 −𝑟

⋱ ⋱ ⋱
−𝑝 𝑞 −𝑟

−𝑝 𝑞 ]
 
 
 
 
 
 

(𝑚−1)×(𝑚−1)

 

𝑈
~

= [𝑈11 𝑈21 𝑈31 ⋯ 𝑈𝑚−2,1 𝑈𝑚−1,1]𝑇 , 

𝑓
~

= [𝑈11 + 𝑝1𝑈01 𝑈21 𝑈31 ⋯ 𝑈𝑚−2,1 𝑈𝑚−1,1 + 𝑝𝑚−1𝑈𝑚,1]𝑇 . 

 

𝜎𝛼,𝑘 ∑𝜔𝑗
(𝛼)

(𝑈𝑖,𝑛−𝑗+1 − 𝑈𝑖,𝑛−𝑗) =
𝛾

ℎ2
(𝑈𝑖−1,𝑛 − 2𝑈𝑖,𝑛 + 𝑈𝑖+1,𝑛) +

𝜌

2ℎ
(𝑈𝑖+1,𝑛 − 𝑈𝑖−1,𝑛) + ∅𝑈𝑖,𝑛 + 𝑓𝑖,𝑛

𝑛

𝑗=1

 (6) 

𝜎𝛼,𝑘(𝑈𝑖,1 − 𝑈𝑖,0) = 𝛽0𝑈𝑖−1,1 − 𝛽1𝑈𝑖,1 + 𝛽2𝑈𝑖+1,1 + 𝑓𝑖,1 

 
(7) 

−𝑝𝑖𝑈𝑖−1,1 + 𝑞𝑖𝑈𝑖,1 − 𝑟𝑖𝑈𝑖+1,1 = 𝑓𝑖,1
∗ ,     𝑖 = 1,2, … ,𝑚 − 1 (8) 

𝐴𝑈
~

= 𝑓
~

 (9) 
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FORMULATION OF SOR ITERATIVE METHOD 

In this section, we investigate the performance of the SOR method as studied by Young (1971) for 

solving the linear system resulting from the discretization of the problem (1). As a benchmark, we 

also consider the GS iterative method which is equivalent to the SOR iterative method when the 

relaxation parameter 𝜔 = 1. The objective of this study is to showcase the efficiency of the SOR 

iterative method for solving problems (1). This method is specifically designed to handle the second-

order implicit finite difference scheme and the Caputo fractional derivative operator. To establish the 

formulation of the SOR iterative method, we decompose the coefficient matrix A in Equation (9) 

mentioned above as:  

𝐴 = 𝐷 + 𝐿 + 𝑉 (10) 

where D, L and V are the diagonals, lower triangulation, and upper triangulation matrices 

respectively. The SOR iterative method can be obtained and presented in matrix form using the 

decomposition matrix in Equation (10) as shown in several studies (Ford et al., 2011; Yuste, 2006; 

Zhang, 2009).  
𝑈
~

(𝑘+1) = (𝐷 − 𝜔𝐿)−1[𝜔𝑉 + (1 − 𝜔)𝐷]𝑈
~

(𝑘) + (𝐷 − 𝜔𝐿)−1𝑓, (11) 

where 𝑈
~𝑗

(𝑘) represents the unknown vector at the 𝑘𝑡ℎ iteration and relaxation parameter 𝜔 ∈  [1,2). 

Meanwhile, by referring to Equations (8) and (11), the SOR scheme can be expressed based on the 

point iteration as 

 

𝑈𝑖,𝑗
(𝑘+1)

= (1 − 𝜔)𝑈𝑖+1,𝑗
(𝑘)

+
𝜔

𝑞𝑖

(𝑝𝑖𝑈𝑖−1,1 + 𝑟𝑖𝑈𝑖+1,1 − 𝑓𝑖,1
∗ )     𝑖 = 1,2, … , 𝑛;    𝑗 = 1,2,3, … ,𝑀 (12) 

 

Remember that the relaxation parameter for the conventional SOR iterative approach is 0 ≤ 𝜔 < 1. 

Algorithm 1 summarizes the general algorithm of the SOR iterative technique for solving SLE (9). 

 

Table 1. Algorithm for SOR scheme  

Algoritm 1: SOR scheme 

i. Initialize 𝑈
~𝑗

(𝑘+1)
← 0 and 𝜀 ← 10−10 

ii. Assign the optimal value of 𝜔 

iii. For 𝑖 = 1,2, … , 𝑛 − 1 and 𝑗 = 1,2,3, … ,𝑚 − 1 assign 

𝑈𝑖,𝑗
(𝑘+1)

= (1 − 𝜔)𝑈𝑖+1,𝑗
(𝑘)

+
𝜔

𝑞𝑖

(𝑝𝑖𝑈𝑖−1,1 + 𝑟𝑖𝑈𝑖+1,1 − 𝑓𝑖,1
∗ )      

iv. Check the convergence test. If the convergence criterion i.e 

‖𝑈
~

(𝑘+1) − 𝑈
~

(𝑘)‖ ≤ 𝜀 = 10−10 is satisfied, go to step (v). Otherwise, go back to 

step (iii) 

 

v. Display approximate solutions. 

 

 

NUMERICAL EXPERIMENTS  

To investigate the performance of the SOR and the GS iterative methods, we evaluated three 

examples of TFDEs. The goal was to validate the efficiency of both iterative approaches based on three 

criteria: the number of iterations (K), the execution time in seconds, and the maximum error. The 

evaluation was conducted at three different values of α = 0.25, α = 0.50, and α = 0.75. Throughout the 

implementation of the point iterations, a convergence test was performed considering a tolerance 

error, 𝜀 = 10−10. This ensured that the iterative methods continued until the desired level of accuracy 

was achieved. 
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Example 1 [Ford et al, 2011] Consider the following time fractional initial boundary value problem  

 
𝑑𝛼𝑈(𝑡, 𝑥)

dt2
−

𝑑2𝑈(𝑡, 𝑥)

dx2
= 𝑓(𝑥, 𝑡), 𝑡 ∈ [0,1], 𝑡 ≥ 0, 0 < 𝑥 < 1, (13) 

where the boundary conditions are given in 

u(0, t) = u(1, t) = 0,    𝑡 ∈ [0,1],  

and initial condition 

u(t, 0) = 0,    𝑢(𝑡, 1) = 0,   0 < 𝑥 < 1 
The exact solution is written as 

𝑢(𝑥, 𝑡) = 𝑡2sin2𝜋𝑥. 

and 

𝑓(𝑥, 𝑡) =
2

 𝛤(3−𝛼)
𝑡2−𝛼 sin(2𝜋𝑥) + 4𝜋2sin(2𝜋𝑥)𝑡2. 

 

Example 2 [Karatay et al, 2011] Consider the following time fractional initial boundary value problem  

 
𝑑𝛼𝑈(𝑡, 𝑥)

dt2
−

𝑑2𝑈(𝑡, 𝑥)

dx2
= 3.009011112𝑡

3
2 sin(𝜋𝑥) cos(𝜋𝑥) + 4𝑡2 sin(2𝜋𝑥) 𝜋2,   (0 < 𝑥 < 1,0 << 1) (14) 

where the boundary conditions are given in 

 
u(0, x) = u(1, x) − sin(2𝜋𝑥),     0 ≤ 𝑥 ≤ 1, 

with initial condition as 

 
u(t, 0) = 0,    𝑢(𝑡, 1) = 0,   0 ≤ 𝑥 ≤ 1 

 

The exact solution is 

𝑢(𝑡, 𝑥) = 𝑡2 sin(2𝜋𝑥). 

 

Example 3 [Mohammad et al, 2021] Consider the following time fractional initial boundary value problem  

 
𝑑𝛼𝑈(𝑡, 𝑥)

dt2
=

𝑑2𝑈(𝑡, 𝑥)

dx2
+ 𝑓(𝑥, 𝑡), 𝑥 ∈ [0,1], 𝑡 ≥ 0, 0 < 𝛼 < 1, (15) 

where the exact solution is 

𝑢(𝑥, 𝑡) = 𝑡2 (x − 1)2sin(2𝜋𝑥). 

and 

𝑓(𝑥, 𝑡) = 0.5𝑡2𝑒2𝑥2(x − 1)2𝛤(𝛼 + 3) − 𝑡(2+𝛼)𝑒𝑥(𝑥4 + 6𝑥3 + 𝑥2 − 8𝑥 + 2). 

 

Table 1-3 presents the results of numerical experiments for numerical experiments given in 

Example 1 - 3 acquired by the implementation of GS and SOR iterative methods at various mesh sizes, 

m = 512, 1024, 2048, 4096, and 8192. 
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Table 1. Comparison of the number of iterations (K), execution time (Seconds), and maximum errors 

for iterative algorithms using Example 1 at α = 0.25, α = 0.50, and α = 0.75. 

M Method α = 0.25 α = 0.50 α = 0.75 

  K t Max Error K t Max Error K t Max Error 

512 GS 53857 114.98 1.2810e-03 24085 89.63 4.4632e-03 6330 52.28 7.9839e-03 

SOR 2364 43.97  1.2802e-03 513 7.75 4.4628e-03 605 8.12 7.9837e-03 

𝜔=1.9665 𝜔=1.9665 𝜔=1.9665 

1024 GS 173277 517.97 1.2831e-03 82433 265.18 4.4645e-03 21924 152.50 7.9844e-03 

SOR 8200 112.38 1.2801e-03 2537 97.32 4.4632e-03 733 92.77 7.9839e-03 

𝜔=1.9665 𝜔=1.9665 𝜔=1.9665 

2048 GS 569412 4134.55 1.2898e-03 276232 1662.40 4.4687e-03 74187 536.333 7.9857e-03 

SOR 26390 324.55 1.2805e-03 8528 237.90 4.4633e-03 2000 187.07 7.9840e-03 

𝜔=1.9665 𝜔=1.9665 𝜔=1.9665 

4096 GS 968304 6223.24 1.2910e-03 893663 7568.23 4.4851e-03 242796 2772.33 7.9911e-03 

SOR 78937 1145.75.85 1.2814e-03 27712 642.17 4.4637e-03 6907 423.12 7.9841e-03 

𝜔=1.9665 𝜔=1.9665 𝜔=1.9665 

8192 GS 1292468 15634.89 1.2981e-03 1093664 13246.30 4.4913e-03 755078 9497.12 8.0123e-03 

SOR 213681 2461.79 1.2849e-03 91185 1466.14 4.4649e-03 23736 1163.51 7.9845e-03 

𝜔=1.9665 𝜔=1.9665 𝜔=1.9665 

 

Table 2. Comparison of the number of iterations (K), execution time (Seconds), and maximum errors 

for iterative algorithms using Example 1 at α = 0.25, α = 0.50, and α = 0.75. 

M Method α = 0.25 α = 0.50 α = 0.75 

  K t Max Error K t Max Error K t Max Error 

512 GS 54367 69.28 7.4630e-04 6985 2.36 4.4619e-03 6262 7.97 8.1975e-03 

SOR 21582 14.36 7.4556e-04 2462 6.63 4.4632e-03 1863 2.06 8.1974e-03 

𝜔=1.5852 𝜔=1.5852 𝜔=1.5852 

1024 GS 174667 444.32 7.4834e-04 82432 207.83 4.4647e-03 21651 61.32 8.1980e-03 

SOR 61283 81.77 7.4663e-04 25349 44.14 4.4637e-03 6534 12.19 8.1977e-03 

𝜔=1.5852 𝜔=1.5852 𝜔=1.5852 

2048 GS 574443 2851.48 7.5512e-04 276231 1314.58 4.4689e-03 73097 384.56 8.1994e-03 

SOR 185173 510.38 7.4894e-04 86150 288.38 4.4649e-03 22556 76.37 8.1980e-03 

𝜔=1.5852 𝜔=1.5852 𝜔=1.5852 

4096 GS 1035653 6225.50 7.5511e-04 564235 3576.54 4.4689e-03 189546 752.56 8.1980e-03 

SOR 599967 3349.85 7.5602e-04 287685 1021.95 4.4693e-03 76054 128.65 8.1995e-03 

𝜔=1.5852 𝜔=1.5852 𝜔=1.5852 

8192 GS 2054687 9216.66 7.5532e-04 1307158 7635.36 4.4688e-03 702565 1532.56 8.1980e-03 

SOR 836512 3349.85 7.4894e-04 423977 2143.41 4.4693e-03 247702 246.64 8.1995e-03 

𝜔=1.5852 𝜔=1.5852 𝜔=1.5852 

 

Table 3. Comparison of the number of iterations (K), execution time (Seconds), and maximum errors 

for iterative algorithms using Example 1 at α = 0.25, α = 0.50, and α = 0.75. 

M Method α = 0.25 α = 0.50 α = 0.75 

  K t Max Error K t Max Error K t Max Error 

512 GS 93567 168.38 8.2271e-03 24584 66.33 4.5947e-03 5102 43.86 2.5436e-03 

SOR 22813 40.59 1.8089e-04 6150 11.63 2.1951e-04 1262 8.14 1.6508e-04 

𝜔=1.5676 𝜔=1.5676 𝜔=1.5676 

1024 GS 308691 1076.17 2.5983e-03 80866 265.29 4.6239e-03 17184 124.50 2.5799e-03 

SOR 73073 110.17 1.8213e-04 19647 127.57 2.1997e-04 4070 19.22 1.6519e-04 

𝜔=1.5676 𝜔=1.5676 𝜔=1.5676 

2048 GS 55978 2537.32 2.5983e-03 254484 1222.56 4.6386e-03 55978 140.95 2.5983e-03 

SOR 219512 1034.97 1.8706e-04 58903 409.33 2.2176e-04 12381 52.73 1.6558e-04 

𝜔=1.5676 𝜔=1.5676 𝜔=1.5676 

4096 GS 174175 4869.22 2.6075e-03 750184 5845.53 4.6459e-03 174175 691.32 2.6075e-03 

SOR 585294 3982.81 2.0672e-04 157479 607.40 2.2864e-04 33752 154.93 1.6715e-04 

𝜔=1.5676 𝜔=1.5676 𝜔=1.5676 

8192 GS 2361262 53241.22 2.6075e-03 1990784 19038.98 4.6496e-03 506195 5638.00 2.6121e-03 

SOR 843690 5494.53.00 2.0536e-04 321261 1282.61 2.5333e-04 50628 475.05 1.6715e-04 

𝜔=1.5676 𝜔=1.5676 𝜔=1.5676 

 

The comparative results in Tables 1-3 show the substantial advantages of the SOR method over the 

GS method, particularly in terms of iteration number and execution time. Across all tested fractional 

orders 𝛼 = 0.25, 𝛼 = 0.50, and 𝛼 = 0.75 and mesh sizes, the SOR method is consistently demonstrated 

marked reduction in both iteration number and execution time. For instance, with M=512 and α=0.25, 
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the SOR method achieved 95.6% reduction in iteration numbers compared to the GS method, while 

maintaining similar accuracy levels, as evidenced by the comparable maximum errors. This 

improvement is primarily attributed to the optimal selection of the relaxation parameter ω, which 

significantly accelerates convergence. As the mesh size increases, the scalability of the SOR method 

becomes increasingly evident, offering reductions in execution time exceeding 80% for larger grids, 

compared to GS. These results highlight the SOR method as not only an efficient iterative solver but 

also a scalable solution for handling large, complex systems arising from fractional-order diffusion 

problems. Given these findings, the SOR method presents a compelling alternative for solving time-

fractional partial differential equations, outperforming traditional iterative approaches both in terms 

of speed and computational cost without compromising accuracy. 

 

 

CONCLUSION 

This study successfully demonstrated the formulation and application of the SOR method using a 

second-order implicit finite difference scheme with the Caputo fractional derivative operator. The 

numerical results clearly indicate that the SOR method outperforms the GS method, both in terms of 

iteration number and execution time. This superior performance is primarily due to the optimal 

selection of the relaxation parameter, which significantly accelerates the convergence. The results 

highlight the potential of the SOR method as an efficient solution for handling large systems of linear 

equations arising from fractional-order diffusion problems. 
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