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ABSTRACT Many problems in life are composed of conflicting and influencing multiple objectives, and people often 
encounter the optimization problem of simultaneously optimizing multiple objectives in each area, which is called multi-
objective optimization problem. Therefore, solving such problems has important scientific research value and practical 
significance. This paper proposes a Newton Gauss-Seidel iteration method for solving multi-objective constrained 
optimization problems by constructing Newton directions and introducing Gauss-Seidel (GS) iterative method for solving 
linear equations. The solution of this combination between Newton, Gauss-seidel and Lagrange multiplier method involves 
two stages: objective function and constraint condition processing stage. In the first stage, the original multi-objective 
function is scalarized, and only the decision-maker needs to give each objective function a weight, by transforming it into a 
single objective constrained optimization problem. Then the Lagrange multiplier method was used to transform the 
constrained optimization problem into an unconstrained optimization problem. The second stage is to use the Newton-
Gauss-Seidel (NGS) iterative method to solve the transformed constrained optimization problem. Finally, numerical 
experiments showed that our proposed algorithm can achieve good results. 
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INTRODUCTION 

Constrained multi-objective optimization problems (CMOP) exist and may be widely encountered 

in the real world, such as in vehicle path planning (Jozefowiez et al., 2008), traffic route optimization 

(Zhu & Zhu, 2020), financial investment (El-Abbasy et al., 2020), and so on. In these problems, there 

are often multiple objectives that need to be optimized, but the objective functions tend to be 

conflicting and repelling in nature, which often leads to poor results for the other objectives when one 

objective is optimized. Therefore, it is necessary to design a good algorithm to obtain a set of well-

distributed Pareto-optimal solutions. While optimizing, there is also the need to consider multiple 

constraints, which makes the problem even more complex. For example, in the target space, the 

feasible region may become discontinuous and difficult to find, or the feasible region may become 

extremely narrow resulting in difficulty in identifying the optimal solution (Liu, 2017). There are also 

problems of many local optimization traps that make it difficult for the algorithm to converge to the 

true Pareto frontier. Therefore, resolving these problems is an arduous and complex task and is 

currently attracted many attentions due to its wide applications. 

 

 

BACKGROUND THEORY 

The mathematical model for multi-objective optimization problems with constraints that this 

paper endeavours to solve can be expressed as 
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𝑚𝑖𝑛 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥),⋯ , 𝑓𝑚(𝑥))𝑇 ,                                                               (1) 

with 
𝑠. 𝑡.  𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1,… , 𝑝, 

ℎ𝑘(𝑥) = 0, 𝑘 = 𝑝 + 1, 𝑝 + 2,… , 𝑝 + 𝑞, 
𝑥 ∈ 𝑅𝑛 , 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ∈ 𝑅𝑛  is an n-dimensional decision vector, 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥),⋯ , 𝑓𝑚(𝑥))𝑇 ∈ 𝑅𝑚 

is the target vector, 𝑔𝑗(𝑥) ≤ 0 is the j-th inequality constraint condition, ℎ𝑘(𝑥) = 0 is the k-th equation 

constraint condition. 

 

It is well known that scalar method has the ability to transform multi-objective optimization 

problems into single-objective for solution, and is one of the most effective methods for solving multi-

objective optimization problems. Typical methods mainly include objective method, linear weighting, 

minimax, and some other methods (Hu,1990). In addition, there are also hierarchical sorting methods, 

key target methods, feasible direction methods and others (Lin & Dong, 1992). Among them, the linear 

weighting method has gradually become a widely used method by scholars (Stanimirovic et al., 2011) 

in solving multi-objective problems, due to its simplicity and ease of operation. Linear weighting 

method refers to the method of assigning a coefficient to each objective function of the multi-objective 

optimization problem according to its importance, which is based on analysing each objective 

function and then, adding these objective functions with coefficients to construct a single objective 

function as follows. 

𝑚𝑖𝑛𝐹(𝑥) = 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + ⋯+ 𝑤𝑚𝑓𝑚(𝑥)                                               (2) 

where 𝑤𝑖(𝑖 = 1,… ,𝑚) is the weighting coefficients, and  ∑ 𝑤𝑖
𝑚
𝑖=1 = 1. 

 

The indirect method is one of the effective methods for solving constrained optimization problems, 

which include Lagrange multiplier method (Laptin & Bardadym, 2019), penalty function method 

(Nguyen & Strodiot,1979; Hassan & Baharum, 2019; Rockafellar, 1973; Napituplu et al., 2018), feasible 

direction method (Zoutendijk, 1970), gradient projection method (Rosen, 1960), and others. The 

Lagrange multiplier method, which has a strict mathematical foundation and is more efficient, has 

been favoured by many researchers. In this paper, the Lagrange multiplier method is mainly used to 

deal with constraints in multi-objective optimization problems. The specific expression for this 

method may be represented by Equation (3). 

𝐿(𝑥, 𝜇, 𝜆) = 𝐹(𝑥) + ∑ 𝜇𝑗𝑔𝑗(𝑥)𝑝
𝑗=1 + ∑ 𝜆𝑘ℎ𝑘(𝑥)𝑝+𝑞

𝑘=𝑝+1                                          (3) 

where 𝜇 = (𝜇1, 𝜇2, ⋯ , 𝜇𝑝)
𝑇
and 𝜆 = (𝜆𝑝+1, 𝜆𝑝+2,⋯ , 𝜆𝑝+𝑞)

𝑇
, the latter being the Lagrange multiplier. 

 

Newton's method, as described by Atkinson (1985), is a well-established approach for addressing 

unconstrained optimization problems. It generates a Newton iterative direction contingent upon the 

objective function and constraint function being continuously differentiable twice, so that the 

solution-seeking direction is a descending direction for each objective function under feasible 

conditions. This method searches for the optimal step size along this direction, and ultimately and 

iteratively reaches the optimal solution. The iterative formula of the Newton's method can be 

expressed as 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘,                                                                   (4) 

where 𝑑𝑘 = −𝐻𝑘
−1𝑔𝑘, is the search direction with step size factor 𝛼𝑘 = 1, 𝐻𝑘 = ∇2𝐿(𝑥𝑘), 𝑔𝑘 = ∇𝐿(𝑥𝑘). 

 

Newton's method uses both the information of the first and second-order partial derivatives of the 

objective function and at the same time, needs the Hessian matrix of the objective function to be 

positive definite. If the Hessian matrix cannot maintain to be positive definite, the Newton method 
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will become invalid. Therefore, this paper will regard the Newton iteration as a linear system and use 

the Gauss-Seidel (GS) iteration method for resolving the Newton direction. 

 

 

METHODOLOGY 

 

Newton Iterative Method  

In Equation (4), 𝐻𝑘
−1 is the inverse of the Hessian matrix 𝐻𝑘 = ∇2𝐿(𝑥𝑘), and the iteration direction 

𝑑𝑘 = −𝐻𝑘
−1𝑔𝑘 can be expressed as 

𝐻𝑘𝑑𝑘 = −𝑔𝑘                                                                          (5) 

As long as 𝐻𝑘 is positively definite, the Newton direction of Equation (4) will be in the descending 

direction. Therefore, its inverse exists and satisfies the inequality:  

𝑔𝑘
𝑇𝑑𝑘 = −𝑔𝑘

𝑇𝐻𝑘
−1𝑔𝑘 < 0                                                               (6) 

As previously outlined, the multi-objective constrained optimization problem uses the weighting 

method and Lagrange multiplier method to convert it into a single objective unconstrained 

optimization problem based on Equation (3). In the problem, 𝐿(𝑥, 𝜇, 𝜆)  is an objective function 

containing n+p+q variables. Because the degree of the Hessian matrix obtained using the Newton 

method is 1, there must be 0 elements in the diagonal elements of the Hessian matrix. Therefore, the 

Hessian matrix may be represented as 

𝐻𝑘 =

[
 
 
 
 
 
 
 

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛 𝑎1,𝑛+1 ⋯ 𝑎1,𝑛+𝑝+𝑞

𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑛 𝑎2,𝑛+1 ⋯ 𝑎2,𝑛+𝑝+𝑞

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑎𝑛,1 𝑎𝑛,2 ⋯ 𝑎𝑛,𝑛 𝑎𝑛,𝑛+1 ⋯ 𝑎𝑛,𝑛+𝑝+𝑞

𝑎𝑛+1,1 𝑎𝑛+1,2 ⋯ 𝑎𝑛+1,𝑛 𝑎𝑛+1,𝑛+1 ⋮ 𝑎𝑛+1,𝑛+𝑝+𝑞

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑎𝑛+𝑝+𝑞,1 𝑎𝑛+𝑝+𝑞,2 ⋯ 𝑎𝑛+𝑝+𝑞,𝑛 𝑎𝑛+𝑝+𝑞,𝑛+1 ⋯ 𝑎𝑛+𝑝+𝑞,𝑛+𝑝+𝑞]

 
 
 
 
 
 
 

                   (7) 

where, the diagonal element 𝑎 in Equation (7), 𝑎1,1,⋯ , 𝑎𝑛+𝑝+𝑞,𝑛+𝑝+𝑞 contains 𝑝 + 𝑞 elements of 0.  

 

Newton-GS Method  

The coefficient matrix 𝐻𝑘 can be used to solve the linear system of Equation (5). Therefore, an 

iterative method can be applied to solve it (Sulaiman et al., 2014; Ghazali et al., 2019), but this method 

needs to ensure that its diagonal element is not zero, and Equation (5) can be rewritten as 
𝐻𝑘

′ ∙ 𝐻𝑘𝑑𝑘 = −𝐻𝑘
′ ∙ 𝑔𝑘 

which can also be written as 

𝐻𝑑 = 𝑔                                                                             (8) 

where, 𝐻 = 𝐻𝑘
′ ∙ 𝐻𝑘 is an invertible matrix, 𝑔 = −𝐻𝑘

′ ∙ 𝑔𝑘 = [𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑛+𝑝+𝑞]
𝑇 and 𝑑𝑇 =

[𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛+𝑝+𝑞]. H can be further split into 

𝐻 = 𝑀 − 𝑁.                                                                        (9) 

𝑀 is known as a splitting matrix which is a selectable invertible matrix and makes 𝑀𝑑 = 𝑔 easy to 

solve. 

 

Solving Equation (8) is equivalent to solving 𝑑 = 𝑀−1𝑁𝑑 + 𝑀−1𝑔, that is, solving a system of linear 

equations which can be simplified as 

𝑑 = 𝐵𝑑 + 𝑓                                                                         (10) 

As a result, the iterative method of Equation (10) may be applied using the following conditions. 

 

{
𝑑0  (𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟)
𝑑𝑘+1 = 𝐵𝑑𝑘 + 𝑓, 𝑘 = 0,1,…

                                                          (11) 

http://tost.unise.org/
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where 𝐵 = 𝑀−1𝑁 𝑎𝑛𝑑 𝑓 = 𝑀−1𝑔. 𝑀 in Equation (9) is a splitting matrix and is the lower triangular 

part of 𝐻. Given so, with 𝑀 = 𝐷 − 𝐸 (lower triangular matrix), then 𝐻 = 𝑀 − 𝑁 = 𝐷 − 𝐸 − 𝑈, and the 

overrelaxation iteration method for solving linear Equations (8) from Equations (10) can be obtained 

(Sulaiman et al., 2015; Ghazali et al., 2019) as 

{
𝑑0  (𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟)

𝑑𝑘+1 = (𝐷 − 𝐸)−1𝑈𝑑𝑘 + (𝐷 − 𝐸)−1𝑔, 𝑘 = 0,1, …
                               (12) 

where, (𝐷 − 𝐸)−1𝑈 is the iteration matrix of the GS iteration method for the equation system of 

Equation (7). Therefore, the formula of the GS iterative method can be used to determine the Newton 

iterative direction of Equation (4) for the linear system represented by Equation (8), which is a Newton 

Gauss-Seidal (NGS) iterative algorithm to solve the problem of Equation (1). The iterative approach 

of the algorithm is listed in Table 1 for reference. 

 

Table 1. Algorithm 1 with NGS steps 

Step 1. 

 

Step 2. 

 

 

 

Step 3. 

 

 

 

 

 

Step 4. 

Step 5. 

Provide the initial value 𝑥0 and the accuracy threshold 𝜀1 = 10−5，𝜀2 =

10−10 and let k: =0. 

Calculate gradient 𝑔𝑘  and matrix 𝐻𝑘. 

If ‖𝑔𝑘‖ < 𝜀, that is, the value of the gradient at this point is close to 0, 

then the extreme point is reached, and the iteration is stopped, 

otherwise, go to step 3.1. 

Step 3.1. 

 

Step 3.2. 

 

Step 3.3. 

Calculate the matrix 𝐻 = 𝐻𝑘
′ ∙ 𝐻𝑘, and determine matrix 

𝐷, 𝐸, 𝑈. 

Calculate the search direction 𝑑𝑘+1 = (𝐷 − 𝐸)−1𝑈𝑑𝑘 +

(𝐷 − 𝐸)−1𝑔. 

Calculate the convergence condition, that is, if ‖𝑑𝑘+1 − 𝑑𝑘‖ <

𝜀2, then go to step 4, otherwise go to step 3.2. 

Calculate the new iteration point as 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. 

Let 𝑘 ≔ 𝑘 + 1, go to step 2. 

 

 

RESULT AND DISCUSSION 

 

Symbol Description 

For convenience, Table 2 shows the abbreviations of symbols used in the analysis and discussion 

on the computation results in this paper. 
 

Table 2. Description of symbols used in the results. 

Notation Description 

M Method 

NOI Number of internal iterations 

NGS Newton-GS method 

TM computational time (Unit: Second) 

POS Pareto optimal solution  

FOV Local optimal Value  𝐿(𝑥) 

 

Numerical Calculation 

To test the practical feasibility of the NGS method, a comparative test is undertaken here to test 

the NGS method. The comparison was done concerning similar results obtained from two references 

http://tost.unise.org/
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which is by Yuan & Li (2005) and Xiao (2010). The test was performed under equality and inequality 

constraints, as well as being based on two objective functions and three objective functions. The 

following two examples will first demonstrate the performance of the NGS method in dealing with 

equality constraints. 

 

Example 1 (Yuan & Li, 2005): 

 
min𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥)) 

𝑠. 𝑡. 𝑥1 + 2𝑥2 − 𝑥3 = 5, 
𝑥1 − 𝑥2 − 𝑥3 = −1, 

 

where  𝑓1(𝑥) = (𝑥1 − 𝑥2 + 𝑥3)
2, 𝑓2(𝑥) = 𝑥1

2 + 2𝑥2
2 + 3𝑥3

2, 𝑓3(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 2)2 + (𝑥3 − 3)2. 

 

The initial point is 𝑥0 = (1,1)𝑇, and the same weight coefficient 𝜆 = (0.5,0.3,02). Implementing the 

NGS iteration algorithm in MATLAB, the Pareto optimal solution obtained is 𝑥∗ =

(1.3611, 2.0, 0.3611)𝑇  (Miettinen, 2004), and the optimal objective function is 𝑓(𝑥∗) =

(0.07716,10.2438,7.0942)𝑇  and 𝐿(𝑥∗) = 4.5306 . Table 3 shows the numerical results of the 

calculation. 

Table 3. Calculation results of Example 1. 

M NOI (outer) NOI (Inner) TM POS FOV 𝑳(𝒙∗) 

NGS 1 53 2.505895 (1.3611, 2.0, 0.3611) 4.5306 

 

Example 2 (Yuan & Li, 2005): 

min𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)), 
𝑠. 𝑡. 2𝑥1 + 5𝑥2 = 25, 

where  𝑓1(𝑥) = 1 − (𝑥1)
2 + 𝑒−𝑥1−𝑥2 + 𝑥2

2 − 2𝑥1𝑥2, 𝑓2(𝑥) = 𝑒𝑥1 − 3𝑥2. 

 

The initial point used is  𝑥0 = (1,1)𝑇, and  the weight coefficient 𝜆 = (0.5,0.5).  Similarly, using the NGS 

iteration algorithm in MATLAB , the Pareto optimal solution calculated is 𝑥∗ = (2.5653, 3.9739)𝑇, 

where the optimal objective function is 𝑓(𝑥∗) = (−10.1787,1.0827)𝑇  and 𝐿(𝑥∗) = −4.54798 . The 

numerical results of the calculation are shown in Table 4. 

 

Table 4. Calculation results of Example 2. 

M NOI (Outer) NOI (Inner) TM POS FOV 𝑳(𝒙∗) 

NGS 7 146 9.048878 (2.5653, 3.9739) −4.54798 

 

To demonstrate the feasibility of the NGS method in dealing with multi-objective optimization 

problems with inequality constraints, the following examples demonstrate are given. 

 

Example 3 (Xiao, 2010) 
min𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)) 

𝑠. 𝑡. 𝑥1
2 + 𝑥2

2 ≤ 4, 
(𝑥1 − 2)2 + 𝑥2

2 ≤ 4, 

where  𝑓1(𝑥) = (𝑥1 + 𝑥2)
2and 𝑓2(𝑥) = 𝑥2. 

 

The initial point  𝑥0 = (−1,−1)𝑇 , and elect the weight coefficient 𝜆 = (0.5,0.5). The NGS iteration 

algorithm  and MATLAB software, the Pareto optimal solution is calculated as 𝑥∗ = (1.0,−1.7321)𝑇, 

where the optimal objective function is 𝑓(𝑥∗) = (0.5359,−1.7321)𝑇  and 𝐿(𝑥∗) = −0.59808 . The 

numerical results of the calculation are shown in Table 5. 

http://tost.unise.org/
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Table 5. Calculation results of Example 3. 

M NOI (Outer) NOI(Inner) TM POS FOV 𝑳(𝒙∗) 

NGS 6 4181 80.3247

50 

(1.0, -1.7321) −0.5981 

 

Example 4 (Xiao, 2010) 
𝑚𝑖𝑛𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)) 

𝑠. 𝑡. 2𝑥1 + 𝑥2 ≥ 1, 
𝑥1 + 3𝑥2 ≥ 1, 
𝑥1, 𝑥2 ≥ 0. 

where  𝑓1(𝑥) = 𝑥1 + 𝑥2 and 𝑓2(𝑥) = 𝑥1
2 + 9𝑥2

2. 

 

The initial point is 𝑥0 = (−1,−1)𝑇 , and the weight coefficient 𝜆 = (0.5,0.5).   The NGS iteration 

algorithm yields the Pareto optimal solution of 𝑥∗ = (0.4000,0.2000)𝑇, where the optimal objective 

function obtained is 𝑓(𝑥∗) = (0.6000, 0.5200)𝑇  and 𝐿(𝑥∗) = 0.56 . The numerical results of the 

calculation are shown in Table 6. 

 

Table 6. Calculation results of Example 4. 

M NOI 

(Outer) 

NOI (Inner) TM POS FOV 𝑳(𝒙∗) 

NGS 1 541 16.434790 (0.4000,0.2000) 0.56 

 

Results Comparison 

The numerical examples in the above shows that the devised algorithm can efficiently and 

effectively solve multi-objective constrained optimization problems. From Examples 1 and 2 with 

equality constraints, using the NGS method compared to the method of Yuan & Li (2005), it does not 

require the use of dimensionality reduction steps in obtaining a Pareto effective solution. Meanwhile, 

from the results of Examples 3 and 4 with inequality constraints, the NGS method can obtain an 

effective solution without the need for interactive iteration steps as described by Xiao (2010). This 

demonstrates that the devised method exhibits certain efficiency and advantages in calculating and 

solving multi-objective optimization problems. 

 
 

CONCLUSION 

This article studies the algorithms for multi-objective constrained optimization problems. It uses 

linear weighting and Lagrange multiplier methods to transform the constrained multi-objective 

optimization problem into an unconstrained single-objective optimization problem. Based on the 

transformed problem, an NGS iteration method is used as a computational technique to obtain a 

Pareto effective solution. This article innovatively combines the linear weighting method, Lagrange 

multiplier method, and Newton iteration method for solving unconstrained optimization problems. 

The numerical experiments reported here have demonstrated the effectiveness and superiority of the 

algorithm. How to apply the algorithm to handle large-scale multi-objective optimization problems 

will be the direction of further research in the future. 
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