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ABSTRACT This paper obtains analytical solutions for the Schrodinger equations (SEs) using variants of the differential 
transform method (DTM). The solutions produced by two-dimensional DTM (2D-DTM), reduced DTM (RDTM), and multistep 
RDTM (MsRDTM) were observed. The outcomes show that the MsRDTM generated more highly accurate solutions to SEs 
than the 2D-DTM and RDTM. The solutions also show that the MsRDTM is straightforward to use, saves a significant amount 
of computing work when solving SEs, and has potential for broad application in other complex partial differential equations. 
Graphical representations are presented to illustrate the different effectiveness and accuracy of the variants of DTM. 
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INTRODUCTION 

Schrodinger equations (SEs) appear in a variety of fields, including fluid mechanics, quantum 

mechanics, nonlinear optics, biology, and other disciplines (Wazwaz, 2006). This equation has also 

been used to model other scientific phenomena, such as optics, and light emission in cables of fibre 

optics. This equation has been solved numerically and analytically using various methods, including 

the Bernoulli (G’/G)-expansion methods (Gu & Aminakbari, 2022), and the modified exponential 

Jacobi method (Nonlaopon et al., 2022).  

 

One of the most used approximate analytical methods in solving this type of equation is the 

differential transform method (DTM). With regards to the developments of the DTM and its variants, 

the two-dimensional DTM (2D-DTM) was initially introduced by Zhou (1986) in solving linear and 

nonlinear initial valued problems in electrical circuit analysis. Then, Ravi Kanth and Aruna (2009) 

implemented the 2D-DTM in solving SEs. The reduced DTM (RDTM) was then introduced by Keskin 

et al. (2011). It caught massive attention from researchers since it helped solving a variety of problems. 

Analytical approximations, often exact solutions, are provided by this approach in a rapidly 

converging power series form with computed elements (Deresse, 2022). Not only does it reduce its 

calculations, but it also solves the problems without the need of complicated steps.  

 

Odibat et al. (2010) introduced the multistep DTM (MsDTM) and applied it to various systems. The 

method produces solution where its convergent series rapidly converges in a large time frame which 

then improves the convergence of the series solution. This multistep scheme was then utilized by Al-

Smadi et al. (2017) by applying it to RDTM, resulting in the multistep RDTM (MsRDTM). Hussin et al. 

(2018; 2019) proposed and implemented the Multistep Modified RDTM (MMRDTM) to obtain 

solutions of NLSEs and fractional NLSEs (FNLSEs) respectively. 

 

This study aims to show the differences of DTM and its variants in solving SEs. The differences are 

observed through the different solutions of DTM, RDTM, and MsRDTM opposing the exact solutions 
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provided. The finding indicates great accuracy of the MsRDTM in solving SEs than the previous 

methods, 2D-DTM, and RDTM. The remaining sections of this work are organized as follows. The 

formulation of 2D-DTM in Section 2, the formulation of RDTM in section 3, while the formulation of 

MsRDTM in section 4. Section 5 illustrates the application of the methods in an example of SEs with 

analytical answers, which are presented in tables and graphs. Lastly, section 6 provides conclusion. 

 

 

METHODOLOGY 

 

Two-Dimensional Differential Transform Method 

Consider two-variable function 𝑢(𝑥, 𝑡), be analytical in the domain K, and let (𝑥, 𝑡)  =  (𝑥0, 𝑡0) in 

this domain. Function 𝑢(𝑥, 𝑡) is then represented by one series whose centre located (𝑥0, 𝑡0) as (Ravi 

Kanth & Aruna, 2009) 

 𝑢(𝑥, 𝑡) = ∑ ∑
1

𝑘!ℎ!
[

𝜕𝑘+ℎ

𝜕𝑥𝑘𝜕𝑡ℎ 𝑢(𝑥, 𝑡)]
𝑥=𝑥0,𝑡=𝑡0

(𝑥 − 𝑥0)𝑘(𝑡 − 𝑡0)ℎ∞
ℎ=0

∞
𝑘=0  (1) 

The differential transform of the function 𝑢(𝑥, 𝑡) is in the form 

 𝑈𝑘,ℎ(𝑥, 𝑡) =
1

𝑘!ℎ!
[

𝜕𝑘+ℎ

𝜕𝑥𝑘𝜕𝑡ℎ 𝑢(𝑥, 𝑡)]
𝑥=𝑥0,𝑡=𝑡0

 (2) 

where 𝑢(𝑥, 𝑡) is the original function and 𝑈𝑘,ℎ(𝑥, 𝑡) is the transformed function. Given the following 

is the differential inverse transform of 𝑈𝑘,ℎ(𝑥, 𝑡) 

 𝑢(𝑥, 𝑡) = ∑ ∑ 𝑈𝑘,ℎ(𝑥, 𝑡)(𝑥 − 𝑥0)𝑘(𝑡 − 𝑡0)ℎ∞
ℎ=0

∞
𝑘=0 . (3) 

When (𝑥0, 𝑡0) are taken as (0, 0), Equation (3) can be expressed as 

 𝑢(𝑥, 𝑡) = ∑ ∑ 𝑈𝑘,ℎ(𝑥, 𝑡)𝑥𝑘𝑡ℎ∞
ℎ=0

∞
𝑘=0 . (4) 

 

Reduced Differential Transform Method 

Consider the two-variable function 𝑢(𝑥, 𝑡) may be written as the product of two single-variable 

functions: 𝜈(𝑥, 𝑡)  =  𝑓(𝑥)𝑔(𝑡). On the foundational properties of the one-dimensional differential 

transform, the function 𝑢(𝑥, 𝑡) may be written as follows: 

 𝑢(𝑥, 𝑡) = (∑ 𝐹(𝑖)𝑥𝑖∞
𝑖=0 )(∑ 𝐺(𝑗)𝑡𝑗∞

𝑗=0 ) = ∑ 𝑈𝑘(𝑥)𝑡𝑘∞
𝑘=0  (5) 

where the t-dimensional span function of 𝑢(𝑥, 𝑡) is denoted by 𝑈𝑘(𝑥). The fundamental definitions of 

RDTM, as stated by Keskin et al. (2011), are as follows: Definition 1 stated that if the domain of 

interest's function 𝑢(𝑥, 𝑡) is analytical and continuously differentiable with regard to time 𝑡 and space 

𝑥, then letting 

 𝑈𝑘(𝑥) =
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘 𝑢(𝑥, 𝑡)]
𝑡=0

 (6) 

where the transformed function is the 𝑡-dimension span function 𝑈𝑘(𝑥). In this study, the primary 

function is denoted by the small letter 𝑢(𝑥, 𝑡), while the altered function is symbolized by the capital 

letter 𝑈𝑘(𝑥). 

 

Definition 2 states the following differential inverse transform of 𝑈𝑘(𝑥): 

 𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘∞
𝑘=0 . (7) 

Then, by fusing (6) and (7), we obtain 

 𝑢(𝑥, 𝑡) = ∑
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘 𝑢(𝑥, 𝑡)]
𝑡=0

𝑡𝑘∞
𝑘=0 . (8) 

According to the preceding definitions, the RDTM concept is obtained from the expanded power 

series. Consider the following operator-form nonlinear partial differential equation to explain the 

fundamental RDTM concepts 

 ℒ𝑢(𝑥, 𝑡) + ℛ𝑢(𝑥, 𝑡) + 𝒩𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) (9) 

with initial condition 

 𝑢(𝑥, 0) =  𝑓(𝑥), (10) 

http://tost.unise.org/
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where ℒ =
𝜕

𝜕𝑡
, ℛ is a partial derivatives linear operator, 𝒩𝑢(𝑥, 𝑡) is a nonlinear operator and 𝑔(𝑥, 𝑡) is 

an inhomogeneous term. 

 

The RDTM suggests that the iteration formula shown below can be formulated as: 

 (𝑘 +  1)𝑈𝑘+1(𝑥) =  𝒢𝑘(𝑥) −  ℛ𝑈𝑘(𝑥) −  𝒩𝑈𝑘(𝑥) (11) 

where 𝑈𝑘(𝑥), ℛ𝑈𝑘(𝑥), 𝒩𝑈𝑘(𝑥) 𝑎𝑛𝑑 𝒢𝑘(𝑥) are the transformations of the functions 

ℒ𝑢(𝑥, 𝑡), ℛ𝑢(𝑥, 𝑡), 𝒩𝑢(𝑥, 𝑡) 𝑎𝑛𝑑 𝑔(𝑥, 𝑡) respectively.  

 

Based on initial condition (10), we write  

 𝑈0(𝑥) =  𝑓(𝑥). (12) 

The following 𝑈𝑘(𝑥) values are obtained by substituting Equation (8) into (7) and doing a simple 

iterative computation. The n-terms approximation solution is then obtained as follows by applying 

inverse transformation on the set of values {𝑈𝑘(𝑥)}𝑘=0
𝑛 : 

 𝑢̃𝑛(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘∞
𝑘=0 . (13) 

As a result, the problem's exact solution is provided by 

 𝑢(𝑥, 𝑡) =  lim
𝑛→∞

𝑢̃𝑛(𝑥, 𝑡). (14) 

 

Multistep Reduced Differential Transform Method 

While applying the concepts of RDTM from Equation (5) (13), the multistep scheme is as follows. 

Divide the interval [0, 𝑇] to generate R subintervals [𝑡𝑟−1, 𝑡𝑟] by equal step size 𝑠 =
𝑇

𝑅
 and nodes 𝑡𝑟 =

𝑟𝑠 such that for 𝑟 = 1,2, … , 𝑅. The upcoming procedures are used to compute MsRDTM. Firstly, 

RDTM is applied to the initial value problem of interval [0, 𝑡1]. Then by using the initial conditions 

 𝑢(𝑥, 0) =  𝑓0(𝑥), (15) 

we obtain the approximate result 

 𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑘,1(𝑥)𝑡𝑘k
𝑘=0 , 𝑡 ∈ [0, 𝑡1]. (16) 

At each subinterval [𝑡𝑟−1, 𝑡𝑟], the initial conditions 

 𝑢𝑟(𝑥, 𝑡𝑟−1) = 𝑢𝑟−1(𝑥, 𝑡𝑟−1) (17) 

are used for 𝑟 ≥ 2 and the implementation of RDTM to the initial value problem on [𝑡𝑟−1, 𝑡𝑟], where 

𝑡𝑟−1 replaces 𝑡0. For 𝑟 = 1,2, … , 𝑅, the repetition of the process is performed and carried out to 

construct an approximate solutions sequence 𝑢𝑟(𝑥, 𝑡) such as, 

 𝑢𝑟(𝑥, 𝑡) = ∑ 𝑈𝑘,𝑟(𝑥)(𝑡 − 𝑡𝑟−1)𝑘𝐾
𝑘=0 , 𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟]. (18) 

Finally, the MsRDTM proposes the following solutions: 

 𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡),   𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡1]

𝑢2(𝑥, 𝑡),   𝑓𝑜𝑟 𝑡 ∈, [𝑡1, 𝑡2] 
⋮

𝑢𝑅(𝑥, 𝑡),   𝑓𝑜𝑟 𝑡 ∈, [𝑡𝑅−1, 𝑡𝑅]

. (19) 

It is crucial to note that when the step size 𝑠 = 𝑇, the RDTM is derived from MsRDTM. 

 

 

NUMERICAL RESULT AND DISCUSSION 

Consider the numerical example given to observe the differences of DTM, RDTM, and MsRDTM 

in solving SEs. Linear Schrodinger Equation (LSE) of the form (Ravi Kanth & Aruna, 2009) 

 𝑢𝑡 + i𝑢𝑥𝑥 = 0 (20) 

is considered with initial condition 𝑢(𝑥, 0) = 1 + cosh 2𝑥. 1 + cosh(2𝑥) 𝑒−4𝑖𝑡 is the exact solution. 

 

By applying the DTM, RDTM, and MsRDTM to equation (20) and using their respected 

fundamental properties, we have 

 𝑈𝑘,ℎ+1(𝑥) = (
−𝐼

ℎ+1
) ((𝑘 + 1) (𝑘 + 2) (𝑈𝑘+2,ℎ(𝑥))) , 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇] (21) 

http://tost.unise.org/
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 𝑈𝑘+1(𝑥) = (
−𝐼

𝑘+1
) (

𝜕2

𝜕𝑥2 𝑈𝑘(𝑥)) , 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇] (22) 

 𝑈𝑘+1,r(𝑥) = (
−𝐼

𝑘+1
) (

𝜕2

𝜕𝑥2 𝑈𝑘,𝑟(𝑥)) , 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡1]. (23) 

 

The results of the exact solution, approximate solutions DTM, RDTM, and MsRDTM for 𝑡 ∈

[0, 1] 𝑎𝑛𝑑 𝑥 ∈ [−5, 5], which involves the real part and imaginary part, are shown in Figures 1(a) - (f), 

respectively. The MsRDTM solutions for this LSE are therefore proved to be quite near to the exact 

solutions. In Table 1, the performance error analysis produced by DTM, and its variants are presented. 

Based on Table 1, the numerical results for absolute error and error norms, 𝐿2 and 𝐿∞ from MsRDTM 

are significantly smaller which proves its accuracy than DTM and RDTM. 

 

Table 1. Error Analysis of Semi-Analytic Solution for DTM, RDTM, and MsRDTM. 

 

Figure 1. Figure 1(a) and Figure 1(b) are between DTM and exact solution (ES), Figure 1(c) and Figure 

1(d) are between RDTM and ES, while Figure 1(e) and Figure 1(f) are between MsRDTM and ES which 

involve the real part and imaginary part respectively. 

T Exact Solutions Absolute Error DTM Absolute Error RDTM 
Absolute Error 

MsRDTM 

0 4.762195691 6.640135 × 10−3                0 0 

0.1 4.465211703 - 1.465068009I 6.639717045 × 10−3 1.221564085 × 10−6 1.221564085 × 10−6 

0.2 3.621146980 - 2.698833994I 6.540919381 × 10−3 1.559385047 × 10−4 2.443817710 × 10−6 

0.3 2.363260783 - 3.506513433I 4.538455570 × 10−3 2.651492475 × 10−3 3.666185484 × 10−6 

0.4 0.8901456830 - 3.760591502I 1.319803385 × 10−2 1.973012085 × 10−2 4.886638138 × 10−6 

0.5 -0.565625835 - 3.420954861I 8.658451228 × 10−2 9.327173470 × 10−2 6.108126554 × 10−6 

0.6 -1.774219459 - 2.541224667I 3.244401985 × 10−1 3.307241111 × 10−1 7.329369482 × 10−6 

0.7 -2.544824830 - 1.260290975I 9.551882539 × 10−1 9.610715118 × 10−1 8.551244237 × 10−6 

0.8 -2.755780304 + 0.2196149509I 2.406816598 2.413230176 9.772797407 × 10−6 

0.9 -2.373780650 + 1.664848505I 5.408457642 5.417867014 1.099458958 × 10−5 

1.0 -1.459135214 + 2.847239087I 11.11508584 11.13228416 1.221626170 × 10−5 
𝐿2 12.63387264 12.65491392 2.397003666 × 10−5 
𝐿∞ 11.11508584 11.13228416 1.221626170 × 10−5 

  
(a) (b) 

http://tost.unise.org/
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Figure 1. Figure 1(a) and Figure 1(b) are between DTM and exact solution (ES), Figure 1(c) and Figure 

1(d) are between RDTM and ES, while Figure 1(e) and Figure 1(f) are between MsRDTM and ES which 

involve the real part and imaginary part respectively (continue). 
 
 

CONCLUSION 

This work uses the classical DTM, RDTM, and MsRDTM for dealing with SEs. The findings 

demonstrate the effectiveness and dependability of the MsRDTM, as shown by the outcomes and the 

graphical representations. Thus, MsRDTM is a valuable mathematical approach for dealing with SEs 

since it is more accurate than the 2D-DTM, and the RDTM. This paper's calculations were all 

performed using Maple 2021. 
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