In silico analysis and structure modelling of heat shock protein HSP70 from Glaciozyma antarctica PI12 as a model system to understand adaptation strategies of Antarctic organisms amid adverse climates

Wan Nur Shuhaida Wan Mahadi; Clemente Michael Wong Vui Ling; Hyun Park; Nur Athirah Yusof.

Transactions on Science and Technology, 10(3), 122 - 149.

Back to main issue

The 70-kDa heat-shock proteins (HSP70) are integral components of the cell’s folding catalysts. Glaciozyma antarctica PI12 is an obligate psychrophilic yeast that possesses six HSP70 genes in its genome. The functions of these HSP70s in G. antarctica in terms of similarities and differences are yet to be discovered. The purpose of this study is to determine the structure and function of HSP70 from G. antarctica, which will lead to understanding this organism's adaptation strategies through structural and functional annotation. In this study, we utilize the HSP70 genes derived from genome data of Glaciozyma antarctica PI12 isolated from the Casey Research Station to characterize and compare structural characteristics which may contribute to their adaptation strategies during global warming. Computational tools such as Expasy’s ProtParam, MEGA 11, SWISS-MODEL, AlphaFold2, and SAVES were used to analyze all the genes via physicochemical analysis, phylogenetic study, homology modelling and structure validation, and superimposition of models. Results showed that reliable 3D models of HSP70 were successfully generated via the homology modelling approach using SWISS-MODEL and AlphaFold2 programs. The proposed model was evaluated as reliable with high confidence based on the structural stereochemical property, verification of protein patterns of non-bonded atomic interactions, compatibility of a 3D model with its amino acid sequence and determination of the protein's native fold. Among the new findings are the molecular signatures such as ionic, aromatic-aromatic, aromatic-sulphur and cation-pi interactions that are lesser in the buried residues when compared to their homologs. These interactions are important for maintaining structure stability, flexibility and packing in proteins. This may reflect the yeast response and adaptation strategies during the adverse climate. By studying the structural adaptations of HSP70 proteins in psychrophilic yeast, researchers can gain insights into how these proteins maintain their functionality in changing temperature conditions. This knowledge can inform the development of strategies to mitigate the impact of global warming on cold-adapted organisms and potentially guide the design of novel enzymes with improved thermal stability for biotechnological applications. In conclusion, this comprehensive study provides an in-depth understanding of the structural adaptation and evolution of HSP70 about their thermal resistance to global warming.

KEYWORDS: HSP70; Stress response; Antarctic Yeast; Structural characteristics; Homology modelling.

Download this PDF file

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter P. 2002. Molecular Biology of the Cell (4th edition). New York: Garland Science.
  2. Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G. & Nielsen, H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420–423.
  3. Almog, O., Kogan, A., Leeuw, M. de, Gdalevsky, G. Y., Cohen‐Luria, R. & Parola, A. H. 2008. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41. Biopolymers: Original Research on Biomolecules, 89(5), 354–359.
  4. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.
  5. Ang, D. L., Hoque, M. Z., Hossain, M. A., Guerriero, G., Berni, R., Hausman, J.-F., Bokhari, S. A., Bridge, W. J. & Siddiqui, K. S. 2021. Computational analysis of thermal adaptation in extremophilic chitinases: the achilles’ heel in protein structure and industrial utilization. Molecules, 26(3), 707.
  6. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195–201.
  7. Asir, F., Korak, T. & Öztürk, Ö. 2021. Three Msa Tools Analysis In Dna and Protein Datasets. Middle East Journal of Science, 2(7), 89-99.
  8. Bae, E. & Phillips, G. N. 2004. Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. Journal of Biological Chemistry, 279(27), 28202–28208.
  9. Bakhos-Douaihy, D., Seaayfan, E., Demaretz, S., Komhoff, M. & Laghmani, K. 2021. Differential effects of STCH and stress-inducible Hsp70 on the stability and maturation of NKCC2. International Journal of Molecular Sciences, 22(4), 2207.
  10. Batabyal, D., Lord, H., Ahlstrom, B. & Wikström, M. 2021. Determination of the experimental extinction coefficient of therapeutic proteins using the Edelhoch method. Biologicals, 71, 42–47.
  11. Boo, S. Y., Wong, C. M. V. L., Rodrigues, K. F., Najimudin, N., Murad, A. M. A. & Mahadi, N. M. 2013. Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biology, 36(3), 381–389.
  12. Briggs, P. 2000. CCP4 Newsletter on Protein Crystallography. Number 38, April 2000. Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
  13. Bryson, K., McGuffin, L. J., Marsden, R. L., Ward, J. M., Sodhi, J. & Jones, D. T. 2005. Protein Structure Prediction Servers At University College London. Nucleic Acids Research, 33(Web Server issue), W36-W38.
  14. Chand, K., Iyer, K. & Mitra, D. 2021. Comparative analysis of differential gene expression of HSP40 and HSP70 family isoforms during heat stress and HIV-1 infection in T-cells. Cell Stress and Chaperones, 26, 403–416.
  15. Chatterjee, K. S., Tripathi, V. & Das, R. 2019. A conserved and buried edge-to-face aromatic interaction in small ubiquitin-like modifier (SUMO) has a role in SUMO stability and function. Journal of Biological Chemistry, 294(17), 6772–6784.
  16. Cho, M.-J. & Park, S.-Y. (2019). Carbon-dot-based ratiometric fluorescence glucose biosensor. Sensors and Actuators B: Chemical, 282, 719–729.
  17. Chown, S. L., Leihy, R. I., Naish, T. R., Brooks, C. M., Convey, P., Henley, B. J., Mackintosh, A. N., Phillips, L. M., Kennicutt II, M. C. & Grant, S. M. 2022. Antarctic climate change and the environment: A decadal synopsis and recommendations for action. Scientific Committee on Antarctic Research, Cambridge, United Kingdom.
  18. Combet, C., Blanchet, C., Geourjon, C. & Deleage, G. 2000. NPS@: network protein sequence analysis. Trends in Biochemical Sciences, 25(3), 147–150.
  19. Convey, P. & Peck, L. S. 2019. Antarctic environmental change and biological responses. Science Advances, 5(11), eaaz0888.
  20. Creighton, T. E. 1988. Disulphide bonds and protein stability. BioEssays, 8(2‐3), 57–63.
  21. Daugaard, M., Rohde, M. & Jäättelä, M. 2007. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 581(19), 3702–3710.
  22. Day, J., Passecker, A., Beck, H.-P. & Vakonakis, I. 2019. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite. The FASEB Journal, 33(12), 14611.
  23. Degrève, L., Fuzo, C. A. & Caliri, A. 2014. Extended secondary structures in proteins. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1844(2), 384–388.
  24. Dong, Y., Liao, M., Meng, X. & Somero, G. N. (2018). Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences, 115(6), 1274–1279.
  25. Dougherty, D. A. 2007. Cation-π interactions involving aromatic amino acids. The Journal of Nutrition, 137(6), 1504S-1508S.
  26. Emberly, E. G., Mukhopadhyay, R., Tang, C. & Wingreen, N. S. 2004. Flexibility of β‐sheets: principal component analysis of database protein structures. Proteins: Structure, Function, and Bioinformatics, 55(1), 91–98.
  27. Emberly, E. G., Mukhopadhyay, R., Wingreen, N. S. & Tang, C. 2003. Flexibility of α-helices: Results of a statistical analysis of database protein structures. Journal of Molecular Biology, 327(1), 229–237.
  28. Firdaus-Raih, M., Hashim, N. H. F., Bharudin, I., Abu Bakar, M. F., Huang, K. K., Alias, H., Lee, B. K. B., Mat Isa, M. N., Mat-Sharani, S., Sulaiman, S., Tay, L. J., Zolkefli, R., Muhammad Noor, Y., Law, D. S. N., Abdul Rahman, S. H., Md-Illias, R., Abu Bakar, F. D., Najimudin, N., Abdul Murad, A. M. & Mahadi, N. M. 2018. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS One, 13(1), e0189947.
  29. Flaherty, K. M., DeLuca-Flaherty, C. & McKay, D. B. 1990. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature, 346(6285), 623–628.
  30. García-Descalzo, L., García-López, E., Alcázar, A., Baquero, F. & Cid, C. 2014. Proteomic analysis of the adaptation to warming in the Antarctic bacteria Shewanella frigidimarina. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1844(12), 2229–2240.
  31. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D. & Bairoch, A.(2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788.
  32. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D. & Bairoch, A. 2005. Protein identification and analysis tools on the ExPASy server. In: Walker, J. M. (ed). The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. pp. 571–607.
  33. Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J. P., Claverie, P., Collins, T., D'Amico, S., Dumont, J., Garsoux, G., Georlette, D., Hoyoux, A., Lonhienne, T, Meuwis, M. A. & Feller, G. 2000. 2000-Cold-adapted enzymes from fundamentals-Gerday. Trends in Biotechnology, 18(3), 103–107.
  34. Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J., Trusel, L. D. & Edwards, T. L. 2019. Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 566(7742), 65–72.
  35. Gómez‐Tamayo, J. C., Cordomí, A., Olivella, M., Mayol, E., Fourmy, D. & Pardo, L. 2016. Analysis of the interactions of sulfur‐containing amino acids in membrane proteins. Protein Science, 25(8), 1517–1524.
  36. Gong, W. J. & Golic, K. G. 2006. Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics, 172(1), 275–286.
  37. Gutt, J., Isla, E., Xavier, J. C., Adams, B. J., Ahn, I.-Young, Cheng, Colesie, C., Cummings, V. J., di Prisco, G., Griffiths, H., Hawes, I., Hogg, I., McIntyre, T., Meiners, K. M., Pearce, D. A., Peck, L., Piepenburg, D., Reisinger, R. R., Saba, G. K., Schloss, I. R.,Signori, C. N., Smith, C. R., Vacchi, M., Verde, C. & Wall, D. H. 2021. Antarctic ecosystems in transition–life between stresses and opportunities. Biological Reviews, 96(3), 798–821.
  38. Hassan, F., Nawaz, A., Rehman, M. S., Ali, M. A., Dilshad, S. M. R. & Yang, C. 2019. Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. Animal Nutrition, 5(4), 340–350.
  39. Hess, K., Oliverio, R., Nguyen, P. V., Le, D., Ellis, J., Kdeiss, B., Ord, S., Chalkia, D. & Nikolaidis, N. 2018. Concurrent action of purifying selection and gene conversion results in extreme conservation of the major stress-inducible Hsp70 genes in mammals. Scientific Reports, 8, 5082.
  40. Hirokawa, T., Boon-Chieng, S. & Mitaku, S. 1998. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics, 14(4), 378–379.
  41. Horwich, A. L. & Fenton, W. A. 2020. Chaperonin-assisted protein folding: A chronologue. Quarterly Reviews of Biophysics, 53, e4.
  42. Hosseinian, S. H., Haddad-Mashadrizeh, A. & Dolatabadi, S. 2018. Simulation and Stability Assessment Of Anti-epcam Immunotoxin For Cancer Therapy. Advanced Pharmaceutical Bulletin, 8(3), 447-455.
  43. Ikai, A. 1980. Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry, 88(6), 1895–1898.
  44. Isaksen, G. V., Åqvist, J. & Brandsdal, B. O. 2016. Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proceedings of the National Academy of Sciences, 113(28), 7822–7827.
  45. Jazi, M. A., Seyedi, S. M., Ebrahimie, E., Ebrahimi, M., Moro, G. D &, Botanga, C. J. 2017. A Genome-wide Transcriptome Map Of Pistachio (Pistacia Vera L.) Provides Novel Insights Into Salinity-related Genes and Marker Discovery. BMC Genomics, 18, Article number 627(2017).
  46. Jin, J., Zhao, M., Wang, Y., Zhou, Z., Wan, F. & Guo, J. 2020. Induced thermotolerance and expression of three key Hsp genes (Hsp70, Hsp21, and sHsp21) and their roles in the high temperature tolerance of Agasicles hygrophila. Frontiers in Physiology, 10, 1593.
  47. Jónsdóttir, L. B., Ellertsson, B. Ö., Invernizzi, G., Magnúsdóttir, M., Thorbjarnardóttir, S. H., Papaleo, E. & Kristjánsson, M. M. 2014. The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1844(12), 2174–2181.
  48. Joseph, B., Ramteke, P.W. & Thomas, G. 2008. Cold active microbial lipases: some hot issues and recent developments. Biotechnology Advances, 26(5), 457–470.
  49. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A. and Bridgland, A. 2021. Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589.
  50. Kabani, M. & Martineau, C. N. 2008. Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Current Genomics, 9(5), 338–348.
  51. Karshikoff, A., Nilsson, L. & Ladenstein, R. 2015. Rigidity versus flexibility: the dilemma of understanding protein thermal stability. The FEBS Journal, 282(20), 3899–3917.
  52. Karunanayake, C. & Page, R. C. 2021. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Experimental Biology and Medicine, 246(12), 1419–1434.
  53. Kityk, R., Kopp, J., Sinning, I. & Mayer, M. P. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Molecular Cell, 48(6), 863–874.
  54. Kourtidis, A., Drosopoulou, E., Nikolaidis, N., Hatzi, V. I., Chintiroglou, C. C. & Scouras, Z. G. 2006. Identification of several cytoplasmic HSP70 genes from the Mediterranean mussel (Mytilus galloprovincialis) and their long-term evolution in Mollusca and Metazoa. Journal of Molecular Evolution, 62, 446–459.
  55. Kuennen, M., Gillum, T., Dokladny, K., Bedrick, E., Schneider, S. & Moseley, P. 2011. Thermotolerance and heat acclimation may share a common mechanism in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301(2), R524–R533.
  56. Kurashova, N. A., Madaeva, I. M. & Kolesnikova, L. I. 2020. Expression of HSP70 heat-shock proteins under oxidative stress. Advances in Gerontology, 10, 20–25.
  57. Lanzarotti, E., Biekofsky, R. R., Estrin, D. A., Marti, M. A. & Turjanski, A. G. 2011. Aromatic–aromatic interactions in proteins: beyond the dimer. Journal of Chemical Information and Modeling, 51(7), 1623–1633.
  58. Lanzarotti, E., Defelipe, L. A., Marti, M. A. & Turjanski, A. G. 2020. Aromatic clusters in protein–protein and protein–drug complexes. Journal of Cheminformatics, 12, Article number 30(2020).
  59. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.
  60. Li, D., Zaman, W., Lu, J., Niu, Q., Zhang, X., Ayaz, A., Saqib, S., Yang, B., Zhang, J., Zhao, H. & Lü, S. 2023. Natural lupeol level variation among castor accessions and the upregulation of lupeol synthesis in response to light. Industrial Crops and Products, 192, 116090.
  61. Makwana, K. M. & Mahalakshmi, R. 2015. Implications of aromatic–aromatic interactions: From protein structures to peptide models. Protein Science, 24(12), 1920–1933.
  62. Manan, F. A. A., Hong, W. W., Abdullah, J., Yusof, N. A. & Ahmad, I. 2019. Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination. Materials Science and Engineering: C, 99, 37–46.
  63. Mao, R., Zhang, H., Bie, L., Liu, L. & Gao, J. 2023. Million-atom Molecular Dynamics Simulations Reveal the Interfacial Interactions And Assembly Of Plant Psii-lhcii Supercomplex. RSC Advances, 10(13), 6699-6712.
  64. Marcos, E. S., Chidyausiku, T. M., McShan, A. C., Evangelidis, T., Nerli, S., Carter, L. M., Nivón, L. G., Davis, A., Oberdorfer, G., Tripsianes, K., Sgourakis, N. G. & Baker, D. 2018. De novo design of a non-local β-sheet protein with high stability and accuracy. Nature Structural & Molecular Biology, 25(11), 1028–1034.
  65. Mayer, M. P. & Bukau, B. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62(6), 670.
  66. Mayer, M. P. 2018. Intra-molecular pathways of allosteric control in Hsp70s. Philosophical Transactions of the Royal Society B, 373(1749), 20170183.
  67. McBride, M. C., Stokke, O. S., Renner, A. H. H., Krafft, B. A., Bergstad, O. A., Biuw, M., Lowther, A. D. & Stiansen, J. E. 2021. Antarctic krill Euphausia superba: spatial distribution, abundance, and management of fisheries in a changing climate. Marine Ecology Progress Series, 668, 185–214.
  68. McGaughran, A., Laver, R. & Fraser, C. 2021. Evolutionary responses to warming. Trends in Ecology & Evolution, 36(7), 591–600.
  69. McGuffin, L. J., Bryson, K. & Jones, D. T. 2000. The Psipred Protein Structure Prediction Server. Bioinformatics, 4(16), 404-405.
  70. Michetti, D., Brandsdal, B. O., Bon, D., Isaksen, G. V., Tiberti, M. & Papaleo, E. 2017. A comparative study of cold- and warm-adapted Endonucleases A using sequence analyses and molecular dynamics simulations. PLoS One, 12(2), e0169586.
  71. Mitra, D. & Das Mohapatra, P. K. 2021. Cold adaptation strategy of psychrophilic bacteria: an in-silico analysis of isocitrate dehydrogenase. Systems Microbiology and Biomanufacturing, 1(4), 483–493.
  72. Mitra, P., Deshmukh, A. S. & Choudhury, C. 2021. Molecular chaperone function of stress inducible Hsp70 is critical for intracellular multiplication of Toxoplasma gondii. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1868(2), 118898.
  73. Moss, S. M., Taylor, I. R., Ruggero, D., Gestwicki, J. E., Shokat, K. M. & Mukherjee, S. 2019. A Legionella pneumophila kinase phosphorylates the Hsp70 chaperone family to inhibit eukaryotic protein synthesis. Cell Host & Microbe, 25(3), 454–462.
  74. Munson, M., Balasubramanian, S., Fleming, K. G., Nagi, A. D., O’Brien, R., Sturtevant, J. M. & Regan, L. 1996. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Science, 5(8), 1584–1593.
  75. Nachmias, B., Lazar, I., Elmalech, M., Abed-El-Rahaman, I., Asshab, Y., Mandelboim, O., Perlman, R. & Ben-Yehuda, D. 2007. Subcellular localization determines the delicate balance between the anti-and pro-apoptotic activity of Livin. Apoptosis, 12, 1129–1142.
  76. Nava, R. & Zuhl, M. N. 2020. Heat acclimation-induced intracellular HSP70 in humans: a meta-analysis. Cell Stress and Chaperones, 25(1), 35–45.
  77. Nikolaidis, N. & Nei, M. 2004. Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes. Molecular Biology and Evolution, 21(3), 498–505.
  78. Odunuga, O. O., Bollinger, S. A., Choi, K. H. & Polvadore, E. I. 2012. Caenorhabditis elegans Hsp70-1 expresses highly in bacteria, is sufficiently soluble, and has a catalytic constant similar to Hsc70 and BiP. Protein Expression and Purification, 82(1), 132–137.
  79. Panja, A. S., Maiti, S. & Bandyopadhyay, B. 2020. Protein stability governed by its structural plasticity is inferred by physicochemical factors and salt bridges. Scientific Reports, 10(1), 1822.
  80. Parvizpour, S., Razmara, J., Shamsir, M. S., Illias, R. M. & Abdul Murad, A. M. 2017. The role of alternative salt bridges in cold adaptation of a novel psychrophilic laminarinase. Journal of Biomolecular Structure and Dynamics, 35(8), 1685–1692.
  81. Pucci, F. & Rooman, M. 2017. Physical and molecular bases of protein thermal stability and cold adaptation. Current Opinion in Structural Biology, 42, 117–128.
  82. Rathor, P. K., Borza, T., Bahmani, R., Stone, S. L., Tonon, T., Yurgel, S., Potin, P. & Prithiviraj, B. 2023. Expression of a Heat Shock Protein 70 from the Brown Alga Ectocarpus sp. Imparts Salinity Stress Tolerance in Arabidopsis thaliana. Journal of Applied Phycology, 35(2), 803–819.
  83. Rosenzweig, R., Nillegoda, N. B., Mayer, M. P. & Bukau, B. 2019. The Hsp70 chaperone network. Nature Reviews Molecular Cell Biology, 20(11), 665–680.
  84. Rout, P. K., Kaushik, R. & Ramachandran, N. 2016. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period. Cell Stress and Chaperones, 21(4), 645–651.
  85. Rüdiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. 1997. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. The EMBO Journal, 16(7), 1501–1507.
  86. Sadiqi, S., Hamza, M., Ali, F., Alam, S., Shakeela, Q., Ahmed, S., Ayaz, A., Ali, S., Saqib, S., Ullah, F. & Zaman, W. 2022. Molecular characterization of bacterial isolates from soil samples and evaluation of their antibacterial potential against MDRS. Molecules, 27(19), 6281.
  87. Schauperl, M. & Denny, R. A. 2022. AI-Based protein structure prediction in drug discovery: Impacts and challenges. Journal of Chemical Information and Modeling, 62(13), 3142–3156.
  88. Silver, J. T. & Noble, E. G. 2012. Regulation of survival gene hsp70. Cell Stress and Chaperones, 17(1), 1–9.
  89. Sivasakthi, V, Anbarasu, A. & Ramaiah, S. 2013. π–π Interactions in Structural Stability: Role in RNA Binding Proteins. Cell Biochemistry and Biophysics, 67, 853–863.
  90. Sivasakthi, V., Anitha, P., Kumar, K. M., Bag, S., Senthilvel, P., Lavanya, P., Swetha, R., Anbarasu, A. & Ramaiah, S. 2013. Aromatic-aromatic interactions: analysis of π-π interactions in interleukins and TNF proteins. Bioinformation, 9(8), 432 - 439.
  91. Struvay, C. & Feller, G. 2012. Optimization to low temperature activity in psychrophilic enzymes. International Journal of Molecular Sciences, 13(9), 11643–11665.
  92. Tamura, K., Stecher, G. & Kumar, S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027.
  93. Tang, M. A. K., Motoshima, H. & Watanabe, K. 2014. Cold adaptation: structural and functional characterizations of psychrophilic and mesophilic acetate kinase. The Protein Journal, 33, 313–322.
  94. Tasneem, M., Gupta, S. D., Momin, M. B., Hossain, K. M., Osman, T. B. & Rabbi, M. F. 2023. In Silico Annotation Of a Hypothetical Protein From Listeria Monocytogenes Egd-e Unfolds A Toxin Protein Of The Type II Secretion System. Genomics Inform, 1(21), e7.
  95. Teilum, K., Olsen, J. G. & Kragelund, B. B. 2011. Protein stability, flexibility and function. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814(8), 969–976.
  96. Tina, K. G., Bhadra, R. & Srinivasan, N. 2007. PIC: protein interactions calculator. Nucleic Acids Research, 35(suppl_2), W473–W476.
  97. Tutino, M. L., Parrilli, E., De Santi, C., Giuliani, M., Marino, G. & de Pascale, D. 2010. Cold-adapted esterases and lipases: A biodiversity still under-exploited. Current Chemical Biology, 4(1), 74–83.
  98. ur Rehman, M. F., Shaeer, A., Batool, A. I. & Aslam, M. 2022. Structure-function relationship of extremozymes. In: Kuddus, M. (Ed). Microbial Extremozymes. London: Academic Press (pp. 9–30).
  99. Williams, T. J., Liao, Y., Ye, J., Kuchel, R. P., Poljak, A., Raftery, M. J. & Cavicchioli, R. 2017. Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi. Environmental Microbiology, 19(6), 2210–2227.
  100. Yadav, M., Gosai, H. G., Singh, G., Singh, A., Singh, A. K., Singh, R. P. & Jadeja, R. N. 2023. Major Impact of Global Climate Change in Atmospheric, Hydrospheric and Lithospheric Context. In: In: Singh, P., Ao, B. & Yadav, A. (eds). Global Climate Change and Environmental Refugees. Springer. (pp. 35–55)
  101. Yang, M., Derbyshire, M. K., Yamashita, R. A, & Marchler‐Bauer, A. 2020. NCBI’s conserved domain database and tools for protein domain analysis. Current Protocols in Bioinformatics, 69(1), e90.
  102. Yu, C.-S., Cheng, C.-W., Su, W.-C., Chang, K.-C., Huang, S.-W., Hwang, J.-K., & Lu, C.-H. 2014. CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PloS One, 9(6), e99368.
  103. Yu, E., Yoshinaga, T., Jalufka, F. L., Ehsan, H., Mark Welch, D. B. & Kaneko, G. 2021. The complex evolution of the metazoan HSP70 gene family. Scientific Reports, 11(1), 17794.
  104. Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., Foster, L. J. & Brinkman, F. S. L. 2010. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 26(13), 1608–1615.
  105. Yusof, N. A., Charles, J., Wan Mahadi, W. N. S., Abdul Murad, A. M. & Mahadi, N. M. 2021. Characterization of inducible HSP70 genes in an Antarctic yeast, Glaciozyma antarctica PI12, in response to thermal stress. Microorganisms, 9(10), 2069.
  106. Yusof, N. A., Kamaruddin, S., Abu Bakar, F. D., Mahadi, N. M. & Abdul Murad, A. M. 2019. Structural and functional insights into TRiC chaperonin from a psychrophilic yeast, Glaciozyma antarctica. Cell Stress and Chaperones, 24(2), 351–368.
  107. Yusof, N. A., Masnoddin, M., Charles, J., Thien, Y. Q., Nasib, F. N., Wong, C. M. V. L., Murad, A. M. A., Mahadi, N. M. & Bharudin, I. 2022. Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress? Polar Biology, 45(3), 371–394.
  108. Zaman, W., Ye, J., Ahmad, M., Saqib, S., Shinwari, Z. K., & Chen, Z. 2022. Phylogenetic exploration of traditional Chinese medicinal plants: A case study on Lamiaceae. Pakistan Journal of Botany, 54(3), 1033-1040
  109. Zhao, J., Zhang, S., Jiang, Y., Liu, Y. & Zhu, Q. 2023. Mutation Analysis Of Pathogenic Non-synonymous Single Nucleotide Polymorphisms (Nssnps) In Wfs1 Gene Through Computational Approaches. Scientific Reports, 13, Article number 6774.
  110. Zuiderweg, E. R. P., Hightower, L. E. & Gestwicki, J. E. 2017. The remarkable multivalency of the Hsp70 chaperones. Cell Stress and Chaperones, 22, 173–189.