Static Bending and Compression Properties of Alkaline Treated Densified Timber of Paraserianthes falcataria

Vinodini Raman; Kang Chiang Liew.

Transactions on Science and Technology, 8(3), 121 - 127.

Back to main issue

ABSTRACT
Wood densification and alkaline pretreatment are well-known to enhance the mechanical properties and lignin-removal, respectively, especially those of low-density timber species. This study was aimed to determine the mechanical properties (static bending and compression) of untreated and alkaline-pretreated densified 3-layered Paraserianthes falcataria timbers. Pretreatment with 3%, 6% and 9% NaOH resulted in an increase up to 44% in mechanical static bending properties, where Modulus of Elasticity with 9% NaOH having the highest value in edge-wise bending, while 6% NaOH obtained the highest value of flat-wise bending. Both edge-wise and flat-wise bending showed slight increment in values for Modulus of Rupture between the concentrations. Compressive strength for compression parallel to the grain obtained by 0% NaOH (control) shows the highest value compared to other concentrations. Meanwhile, compression perpendicular to the grain of 9% NaOH enhanced for about 10% in compressive strength value compared to 0% NaOH.

KEYWORDS: Densification; alkaline pretreatment; low-density timber; mechanical properties; Paraserianthes falcataria.



Download this PDF file

REFERENCES
  1. ASTM D143-21. 2021. Standard Test Methods for Small Clear Specimens of Timber. West Conshohocken, PA: ASTM International.
  2. ASTM D198-21a. 2021. ASTM (American Society for Testing Materials). 2021. Standard Test Methods of Static Tests of Lumber in Structural Sizes. West Conshohocken, PA: ASTM International.
  3. Bami, L. K. & Mohebby, B. 2011. Bioresistance of poplar wood compressed by combined hydro-thermo-mechanical wood modification (CHTM): Soft rot and brown-rot. International Biodeterioration and Biodegradation, 65(6), 866-870.
  4. Carvalho, L. M. H. & Costa, C. A. V. 1998. Modeling and simulation of the hot-pressing process in the production of medium density fiberboard (MDF). Chemical Engineering Communications, 170, 1–21.
  5. Ebnesajjad, S. & Landrock, A. H. 2008. Adhesives Technology Handbook (2nd edition). USA: William Andrew Inc.
  6. Humphrey, P. 1982. Physical aspects of wood particleboard manufacture. Ph.D. thesis, University of Wales, UK.
  7. Humphrey, P. E. & Bolton, A. J. 1989. The Hot Pressing of Dry-formed Wood-based Composites - Part V. The Effect of Board Size: Comparability of Laboratory and Industrial Pressing. Holzforschung, 43(6), 401–405.
  8. Islam, M. A., Razzak, M. A. & Ghosh, B. 2014. Optimization of thermally-compressed wood of Trewia nudiflora species using statistical Box–Behnken design and desirability function. Journal of the Indian Academy of Wood Science, 11 (1), 5–14.
  9. Islam, M. S., Hamdan, S., Jusoh, I., Rahman, M. R., Ahmed, A. S. 2012. The Effect of Alkaline Pretreatment on Mechanical and Morphological Properties of Tropical Wood Polymer Composites. Materials and Design, 33, 419-424.
  10. Kollmann, F. P., Kuenzi, E. W. & Stamm, A. J. 1975. Principles of Wood Science and Technology, II Wood Based Material. Springer-Verlag Berlin Heidelberg.
  11. Kutnar, A. & Sernek, M. 2007. Densification of wood. Zbornik gozdarstva in lesarstva, 82:53-62. ISSN 0351-3114.
  12. Kutnar, A., Sandberg, D. & Haller, P. 2015. Compressed and moulded wood from processing to products. Holzforschung, 69 (7), 885–897.
  13. Nairin, J. A. 2006. Numerical Simulations of Transverse Compression and Densification in Wood. Wood and Fiber Science, 38, 576–591.
  14. Petković, G., Vukoje, M., Bota, J. & Preprotić, S. P. 2019. Enhancement of Polyvinyl Acetate (PVAc) Adhesion Performance by SiO2 and TiO2 Nanoparticles. Coatings, 9(11), 707.
  15. Pizzi, A. 2005. Wood adhesives-basic. In: Packham, D.E. (Ed). Handbook of Adhesion (2nd edition). Bath, UK: JohnWiley & Sons,Ltd. pp 603–606.
  16. Raman, V. & Liew, K. C. 2020. Density of Densified Paraserianthes falcataria Wood Pre-treated with Alkali. 2nd International Conference on Tropical Resources and Sustainable Sciences (CTReSS): Earth and Environmental Science (549). 10-11 August, 2020. Universiti Malaysia Kelantan, City Campus, Malaysia.
  17. Rautkari, L., Properzi, M., Pichelin, F. & Hughes, M. 2008. An innovative thermo densification method for wooden surfaces. Proceedings of the 10th World Conference on Timber Engineering. 02-05 June, 2008. Miyazaki, Japan. pp 177–184.
  18. Sandberg, D., Kutnar, A. & Mantanis, G. 2017. Wood modification technologies - a review. iForest- Biogeosciences and Forestry, 10(6), 895.
  19. Santos, C. M. T., Menezzi, C. H. D. & Souza, M. R. D. 2012. Properties of thermo-mechanically treated wood from Pinus caribaea var. hondurensis. BioResources, 7(2), 1850-1865.
  20. Schrepfer, V. & Schweingruber, F. H. 1998. Anatomical structures in reshaped press-dried wood. Holzforschung, 52, 615-622.
  21. Song, J., Chen, C., Zhu, S., Zhu, M., Dai, J., Ray, U., Li, Y., Kuang, Y., Li, Y., Quispe, N., Yao, Y., Gong, A., Leiste, U. H., Bruck, H. A., Zhu, J. Y., Vellore, A., Li, H., Minus, M. L., Jia, Z., Martini, A., Li, T. & Hu, L. 2018. Processing bulk natural wood into a high-performance structural material. Nature, 554, 224–228.
  22. Wolcott, M. P., Kasal, B., Kamke, F. A. & Dillard, D. A. 1989. Testing Small Wood Specimens in Transverse Compression. Wood and Fiber Science, 21, 320 – 329.