Abstract and References
Transactions on Science and Technology Vol. 4, No. 3-3, 348 - 353, 2017

Nano-Biointerface of Titania Nanotube Arrays Surface Influence Epithelial HT29 Cells Response

Rabiatul Basria S. M. N. Mydin, Mustafa Fadzil Farid Wajidi, Roshasnorlyza Hazan, Srimala Sreekantan

ABSTRACT
The unique structure of Titania Nanotube Arrays (TNA) provides larger surface area and energy to improve cellular interactions for nano-biomaterial implants and nanomedicine applications. TNA topography plays a critical role in cellular stability and cell survival. This nanostructure surface has been shown to modulate diverse cellular responses of cell adhesion, migration, proliferation and differentiation. The present study has found evidence which suggests that TNA nanoarchitecture structures may be beneficial for epithelial cells as a supply or storage route for nutrients and also for mediator growth signals. Thus, this nano-surface might act as a good modulator and communicator in cellular interaction because it could recruit and provide sufficient essential biological element for cell growth and its survival.

KEYWORDS: Titania Nanotube Arrays, Titanium Dioxide Nanosurface, Biological Interface, Bioengineered Nanomaterial

Download Full Text PDF

REFERENCES

Bauer, S., Park, J., Mark, K. & Schmuki, P. (2008). Improved Attachment of Mesenchymal Stem Cells on Super-Hydrophobic TiO2 Nanotubes. Acta Biomaterialia, 4 (5): 1576–82.

Bigerelle, M. & Anselme, K. (2005). Statistical correlation between cell adhesion and proliferation on biocompatible metallic materials. Journal of Biomedical Materials Research, 72(1), 36-46.

Dhawan, U., Pan, H. A., Lee, C. H., Chu, Y. H., Huang, G. S., Lin, Y. R., & Chen, W. L. (2016). Spatial control of cell-nanosurface interactions by tantalum oxide nanodots for improved implant geometry. PloS one, 11(6), e0158425.

do Nascimento, G. M., Olivera, R., Pradie, N. A., Lins, P. R. G., Worfel, P. R., Martinez, G. R., Mascio, P., Dresselhaus, M. S. & Corio, P. (2010). Single-wall carbon nanotubes modified with organic dyes: Synthesis characterization and potential cytotoxic effects. Journal of Photochemistry and Photobiology A: Chemistry 211: 99–107.

Fadl-allah, S., Quahtany, M. and El-Shenawy, N. (2013). Surface Modification of Titanium Plate with Anodic Oxidation and Its Application in Bone Growth. Journal of Biomaterials and Nanobiotechnology, 04 (01), 74-83.

Fujibayashi, S., Neo, M., Kim, H., Kokubo, T. and Nakamura, T. (2004). Osteoinduction of Bioactive Titanium Metal. Biomaterials, 25 (3), 953-956.

Guehennec, L., Soueidan, A., Layrolle, P and Amouriq, Y. (2007). Surface Treatments of Titanium Dental Implants for Rapid Osseointegration. Dental Materials. 23: 844–54.

Hazan, R., Sreekantan, S., Mydin, R. B. S., Abdullah, Y., & Mat, I. (2016, January). Study of TiO2 nanotubes as an implant application. In AIP Conference Proceedings (Vol. 1704, No. 1, p. 040009). AIP Publishing.

Hazan, R., Srimala, S., and Khalil, A.A. (2009). Surface Engineering of Titania for Excellent Fibroblast 3T3 Cell-Metal Interaction. Journal of Physical Science. 20 (1): 35–47.

He, J., Zhou, W., Zhou, X., Zhong, X., Zhang, X., Wan, P., ... & Chen, W. (2008). The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. Journal of materials science: materials in medicine, 19(11), 3465-3472.

Jäger, M., Zilkens, C., Zanger, K. and Krauspe, R. (2007). Significance of Nano- and Microtopography for Cell-Surface Interactions in Orthopaedic Implants. Journal of Biomedicine And Biotechnology, 2007, 1-19

Mydin, R. B. S. M. N., Sreekantan, S., Hazan, R., Farid Wajidi, M. F. & Mat, I. (2017). Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface. Oxidative medicine and cellular longevity, 2017(2017), Article ID 3708048.

Nam, K. H., Kim, P., Wood, D. K., Kwon, S., Provenzano, P. P., & Kim, D. H. (2016). Multiscale cues drive collective cell migration. Scientific reports, 6.

Oh, S., Brammer, K. S., Moon, K. S., Bae, J. M., & Jin, S. (2011). Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO 2 nanotubes. Materials Science and Engineering: C, 31(5), 873-879.

Raimondo, T. Puckett, S., and Webster, T.J. (2010). Greater Osteoblast and Endothelial Cell Adhesion on Nanostructured Polyethylene and Titanium. International journal of nanomedicine, 5: 647–52.

Saharudin, K. A., Sreekantan, S., Aziz, S. N. Q. A. A., Hazan, R., Lai, C. W., Mydin, R. B. S., & Mat, I. (2013). Surface modification and bioactivity of anodic Ti6Al4V alloy. Journal of nanoscience and nanotechnology, 13(3), 1696-1705.

Salata, O. (2004). Applications of Nanoparticles in Biology and Medicine. Journal of Nanobiotechnology, 2, 1-6.

Swami, N., Cui, Z., and Nair, L.S. (2011). Titania Nanotubes: Novel Nanostructures for Improved Osseointegration. Journal of Heat Transfer 133(3), 034002.

Tan, A. W., Murphy, B. P. & Akhbar, S. A. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38, 4421-4435.

Taylor, E. & Webster, T. (2011). Reducing infections through nanotechnology and nanoparticles. International Journal of Nanomedicine, 2011(6), 1463–1473.

Webster, T. and Ejiofor, J. (2004). Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 25(19), 4731-4739.

Xavier, J. R., Desai, P., Varanasi, V. G., Al-Hashimi, I., & Gaharwar, A. K. (2015). Advanced nanomaterials: promises for improved dental tissue regeneration. In: Kishen A. (eds). Nanotechnology in Endodontics. Springer, Cham.

Yashunsky, V., Lirtsman, V., Golosovsky, M., Davidov, D., & Aroeti, B. (2010). Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy. Biophysical journal, 99(12), 4028-4036.