Abstract and References
Transactions on Science and Technology Vol. 4, No. 3-2, 286 - 291, 2017

Effect of Thermal Treatment on Mechanical Properties Rice Husk Ash Filled Tapioca Starch Composite

Dk Norsyafina Binti Pg Adnan, Sazmal Effendi Arshad

ABSTRACT
This research presents a biopolymer from tapioca starch (TPS) as the base and rice husk ash (RHA) as the filler material. TPS molding was prepared by gelatinization and casting technique. Rice husk ash was produced from leaching treatment with calcinations at 700oC for 24 hour. The effect of thermal treatment with varying content of rice husk ash (0, 1, 2, and 3 %) on mechanical properties of tapioca starch composite was evaluated in order to get the characterization of the composite. Result shows a decrease in mechanical properties with the increase of rice husk ash content. However, after thermal treatment at temperature 80oC for 24 hrs the tensile strength has an increase of 13%, 125%, 340% and 311%, respectively.

KEYWORDS: Rice husk ash; tapioca starch; mechanical properties; thermal treatment

Download Full Text PDF
REFERENCES

Ahmad, A., Prayitno, A. & Satoto, R. (2012). Morphology and mechanical properties of palm based fly ash reinforced dynamically vulcanized natural rubber/ polypropylene blends. Procedia Chemistry, 4, 146-153.

Ahmad, I. & Mahanwar, P. (2010). Mechanical properties of fly ash filled high density polyethylene. Journal of Mineral & Materials Characterization & Engineering, 9(3), 183-198.

Ahmed, K., Sheikh, S. N. & Nudrat, Z. R. (2014). Reinforcement of natural rubber hybrid composites based on marble sludge/silica and marble sludge/rice husk derived silica. Journal of Advanced Research, 5(2), 165-173.

Bhat, A. H. & Abdul Khalil, H. P. S. (2011). Nano filler on Oil Palm ash Polypropylene composites. Bioresources, 6(2), 1288-1297.

Ching, K. S., Ealid, M., Ching,Y. C., Haniff, M., Khalid, M. & Beg, M. T. H. (2014). Preparation and characterization on polyvinyl alcohol/oil palm empty fruit bunch fibre composite. Materials Research Innovation, 18, 364-367.

Dai, L., Qiu, C., Xiong, L. & Sun, Q. (2015). Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chemistry, 174, 82-88.

Dais, A. B., Müller, C. M. O., Larotonda, F.D. S. & Laurindo, J. B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51, 213-219.

Espinel Villacrés, R. A., Flores, S. K. & Gerschenson, L. N. (2014). Biopolymeric antimicrobial films: study of influence of hydroxypropyl methylcellulose, tapioca starch and contents on physical properties. Material Science and Engineering C, 36, 108-117.

Eva, M. G., Basuki, W., Nurdin, B. & Harry, A. (2014). Preparation and characterization of rice husk ash as filler material in to nanoparticles on HDPE Thermoplastic composites. Chemistry and materials Research, 6(7), 14-25.

FAO (2015). Rice Market Monitor. Volume XVIII, Issue 1.

Fuad, M. Y. A., Shukor, R., Ishak, Z. A. M. & Omar, A. K. M. (1994). Rice husk ash as filler in polypropylene: Effect of wax and silane coupling agents. Plastics, Rubber and Composite Processing and Application, 21, 225-235.

Gutiérrez, T. J., Morales, N. J., Pérez, E., Tapia, M. S. & Famá, L. (2005). Physic-chemical properties edible films derived from native and phosphate cush-cush yam and cassava starches. Food Packaging Shelf Life, 3, 1-8.

Johar, N. & Ahmad, I. (2012). Morphological, thermal and mechanical properties of starch biocomposites films reinforced by cellulose nanocrystals from rice husk. Bioresources, 7(4), 5469-5477.

Kord, B. (2011). Nano filler reinforcement effect on the thermal, dynamic mechanical and morphological behavior of HDPE/rice husk flour composites. Bioresources, 6(2), 1351-1358.

Maran, J. P., Sivakumar, V., Sridhar, R. & Thirugnanasambandham, K. (2013). Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydrate Polymer, 92, 1335-1347.

Rhim, J. W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposites films. Carbohydrate Polymer, 86, 691-699.

Rodney, J., Sahari, J., Shah, M., Kamal, M. & Sapuan, S. M. (2015). Thermochemical and mechanical properties of tea tree (Melaleuca alternifolia) fibre reinforced tapioca starch composites. E-polymer, 15(6), 401-409.

Sahari, J. & Sapuan, S. M. (2011). Natural fiber reinforced biodegradable polymer composites. Reviews on Advanced. Materials Science, 30, 166-174.

Sahari, J., Saouan, S.M., Ismarrubie, Z. N. & Rahman, M. Z. (2011). Investigation on bending strength and stiffness of sugar palm fiber from different parts reinforced unsaturated polyester composites. Key Engineering Materials, 471(2), 502-506.

Sanyang, M. L., Sapuan, S. M., Jawaid, M. Ishak, M.R. & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal; and barrier properties of biodegradable films based on (Arenga pinnata) starch. Polymer, 7, 1106-1124.

Sarvana, S. D. & Kumar, M. S. (2013). Effect on mechanical properties on rice husk ash reinforced Aluminum Alloy (AlSi10Mg) matrix composites. Procedia Engineering, 64, 1505-1513.

Septo, R. F. T. (2003). The processing of starch as a thermoplastic. Macromolecular Symposia, 200, 255-264.

Teixeira, E.D. M., Pasquini, D., Curvelo, A. A. S., Corradini, E., Belgacem, M. N. & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymer, 78(3), 422-431.

Wan, Y. Z., Luo, H.,He, F., Liang, H., Huang,Y. & Li, X. L. (2009). Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Composites Science and Technology, 69, 1212-1217.

Wicaksono, R., Syamsu,K., Yuliasih, I. & Nasir, M. (2013).cellulose nanofibers from cassava bagasse: characterization and application on tapioca-film. Chemistry Materials Research, 3(13), 79-87.

Zamudio-Flores, P. B., Vargas-Torres, A., Pérez-González, J., Bosquez-Molina, E. & Bello-Pérez, L. A. (2006). Films prepared with oxidized banana starch: mechanical and barrier properties. Starch, 58, 274-282.