Monte Carlo Investigation of Inhomogeneity Phantom Effects in 6 MV Photon Beam

Sitti Yani^{1,2}*, I Gde Eka Dirgayussa³, Mohamad Fahdillah Rhani⁴, Freddy Haryanto¹, Idam Arif¹

¹ Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, INDONESIA.

² Akademi Kebidanan Pelita Ibu Kendari, Jalan Syech Yusuf 12, Kendari 93111, INDONESIA.

³ Institut Teknologi Del, Jalan Trans Sumatera, Toba Samosir 22381, INDONESIA.

⁴ Department of Radiation Oncology, National University Cancer Institute Singapore, Singapore, SINGAPORE.

*Corresponding author. E-Mail: sitti.yani@s.itb.ac.id; Tel: +6285211181223.

Received: 15 March 2016 Revised: 19 April 2016 Accepted: 20 April 2016 In press: 22 April 2016 Online: 13 August 2016

Keywords: Inhomogeneity; Styrofoam; solid water; Monte Carlo; photon beam

ABSTRACT.

The objective of this study is to investigate the inhomogeneity effect in inhomogeneous phantom using dosimetric parameters which are the percentage depth dose (PDD) and lateral profile. The accelerator treatment head used in this study was Varian Trilogy Clinac iX 6 MV photon beam. BEAMnrc Monte Carlo (MC) code system was used to design this linear accelerator (linac) based on manufacturer's details information. The resulting phase space scoring plane after multi-leaf collimator (MLC) component form BEAMnrc was used as an input for the DOSXYZnrc code, which gives the dose distributions of the inhomogeneous phantom. The inhomogeneous phantom consists of solid water (Sun Nuclear) and styrofoam material with varied thickness of 1, 2 and 3 cm. The PDD and lateral profile resulted from MC simulation and measurement data from Tan Tock Seng Hospital Singapore was compared for field size 5×5 and 10×10 cm². The results show that the PDD and lateral profile trends are similar. However, there is a discrepancy of approximately 4% between measured and predicted values which can be associated with the field angle and the degree of inhomogeniety.

© Transactions on Science and Technology 2016

Introduction

The human body consists of a variety of tissues with different physical and material properties (water, lung, bones, etc). The density of each material is varied too. Every material has different radiation dosimetry perspective. Study of inhomogeneity effect in human body have been conducted from many researchers (Sterpin *et al.*, 2007; Don Robinson, 2008; Chow *et al.*, 2009; Cardoso *et al.*, 2010; Ham *et al.*, 2011; Chandola *et al.*, 201; Nedaie *et al.*, 2013; Lloyd and Ansbacher, 2013). Inhomogeneous organ such as lung is more challenging in radiotherapy calculation of dose distribution. The inhomogeneity effect can affect the accuracy of the dose distribution as well as the benefit of radiotherapy and patient survival.

Nowadays, Monte Carlo techniques become gold standard in medical physics to simulate electron and photon transport in materials especially to calculate dose distribution in inhomogeneous

The objective of this study is to investigate the inhomogeneity effect in inhomogeneous phantom (solid water – styrofoam – solid water) using dosimetric parameters (the central axis percentage depth dose (PDD) and beam profiles at specific depth) using EGSnrc Monte Carlo code system. The measurement data from hospital will be compared with MC data to validate the results.

Materials and methods

Accelerator

The accelerator treatment head was used in in this study type Varian Trilogy Clinac iX (Varian Oncology Systems, Palo Alto, CA 94304 USA). This accelerator has a standing waveguide and a 270° bending magnet. Photon beam modalities 6 MV were investigated (Figure 1).

Figure 1. Varian Trilogy Clinac iX 10 MV photon beam (source: Tan Tock Seng Hospital (TTSH) Singapore)

Phantom measurement

The phantom used in this study consisted of solid water (Sun Nuclear) and styrofoam material (Figure 2). The solid water made of water equivalent RW3 material with mass density 1.045 g/cm³. Solid water consists of several different thicknesses (range from 0.1 cm to 1 cm). In this study, solid water with different thickness arranged to get the desired thickness. For example, 6 pieces of solid water with 1 cm thickness packed to get 6 cm of solid water. And the styrofoam material have mass density 0.035 g/cm^3 . The lateral dose profile measurements were performed for two field sizes 5×5 and $10 \times 10 \text{ cm}^2$ using IC profiler (Sun Nuclear) detector placed after styrofoam perpendicular to the beam axis. The IC profiler has 139 diode detectors with dimension 2.9 mm. The dose distribution data obtained

from IC profiled was stored in a .rpm file and proceed by Microsoft excel. This data contain the dose in each detector (X, Y, PD and ND direction) (Figure 3). The dose were normalized to maximum dose.

Figure 2. Inhomogeneous phantom with various thickness of styrofoam (a) 1 cm (b) 2 cm (c) 3 cm

TYPE	UPD	ATE# TIM	ETIC	DUI	SE5	STA	TUS	81	Х2	Х3	X4	X5	Xé	X7	Х8	X5	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X
BIAS1		2162577	2			-0.	00034	6081	9488	9	-0.0	00028	6953	9510	5	-0.	00021	8049	9656	9	-0.0	00036	6090	977	-0.0	0037	18
Calibra	ation	E			0.99	3366	34783	1	1.0	0924	219	1.02	24990	0175	1,01	10801	8246	1.0	1741	9386	1.04	16262	752	1.00	1892	241	1
Ignore	Det				0	0	0	0	Ð	0	0	0	0	0	0	Ð.	0	0	0	0	0	0	Ð	0	0	0	Ċ
Data:	0	126587	11	328	133	-30	-27	-25	-32	-38	-13	-32	-27	-26	-11	-30	-16	~25	-12	-7	-10	10	17	17	22	35	5
Data:	1	251603	56	67	-110)	-75	-65	-91	-96	-44	-65	-52	-41	-6	-60	-23	~26	9	18	65	97	136	169	209	280	3
Datar	2	376620	101	67	-127	7	-74	-59	-88	-91	-30	-48	-23	3	44	-32	0	19	80	105	194	223	289	361	436	567	7
Data:	3	501637	146	67	-104	4	-53	-30	-77	-67	3	б	24	51	120	18	66	99	187	230	334	372	469	564	688	901	1
Data:	4	626654	191	67	-70	1	4	-27	-24	44	77	95	136	191	86	158	163	286	374	474	550	666	802	972	1235	£	1
Data:	5	751671	236	65	-28	61	68	17	37	104	151	169	227	272	167	247	268	416	498	642	726	874	1046	F	1253	£	1
Data:	6	876688	281	65	19	121	128	75	87	166	234	254	331	364	244	347	376	532	645	814	919	1089		1282	2	1543	£.
Data:	7	1001705	326	65	69	187	184	136	147	229	309	334	434	455	312	428	499	660	802	980	1133	3	1315	5	1542	1	1
Data:	8	1126722	371	67	120	245	258	189	220	289	388	418	541	558	403	531	617	788	962	1164	1	1318	Ê.,	1552	£	1791	ł,
Data:	9	1251739	416	67	160	327	309	240	283	362	465	512	650	667	498	646	742	918	112	4	134()	1492	1	1789	1	ï
Datar	10	1376756	461	67	210	392	371	286	353	432	555	618	745	787	592	761	865	105	1	1285	i	1509	e -	1685	5	2005	F
Data:	11	1501772	506	67	265	457	447	353	415	493	649	692	845	892	688	867	972	118	3	1449	2	1675	6	1875		2233	ŧ.
Data:	12	1626789	551	67	310	513	517	403	461	560	725	776	950	100	8	763	96.9	1089	9	1285	9	1603		1854	£	2089	į.
Datar	13	1751806	596	65	350	568	576	470	51.3	631	826	882	104	5	1110	2	850	108	1	1201	5	1408	6	1762	8 - 1	2032	ł.
Data:	14	1076824	641	65	395	627	655	532	572	699	903	962	115	1	1211	£1	936	1190	3	1317	1	1539	6	1923	5	2203	į.
Data:	15	2001840	686	65	445	699	723	589	641	764	986	1054	1	125	2	132	3	103	3	1290	1	1426	8	1666	š	2102	Ł.
Data:	16	2126857	731	67	492	769	806	655	699	844	1073	5	114	4	1345	9.	1421	θ.	111	1	1393	5 0	1535	5	1791	1	ą
Datar	17	2251874	776	67	543	818	863	711	756	896	1153	9	123	1	1457	7	154	7	121	6	1491	£ 3	1655	i	1927	1	ŝ
Data:	18	2376891	821	67	596	894	921	789	812	961	124	5	131	6	1543	3	166	4	130	1	1590	3	1759	91	2069	£.	2
Data:	19	2501908	866	67	642	966	988	844	866	104	0	1335	5	141	4	164	3	177	7	1411	L	1689	6	1867		2198	ŧ.
Data:	20	2626925	911	67	687	103	2	104	5	907	940	1109	9	142	8	151	9	172	ŧ	1885	S.c.s.	1501	i.	1804		1992	ŧ.
Data:	21	2751942	956	67	738	110	4	111	0	958	1000	1	117	£	1524	4	161	6	180	7	1977	7	1587	1	1898	1	ž

Figure 3. Dose distribution data obtained from IC profiler and stored in .rpm file

Monte Carlo modelling of Varian Trilogy Clinac iX 6 MV photon beam

The EGSnrc MC code is currently used to model lineac accelerator (linac) and calculate dose distribution in inhomogeneous phantom developed by the National Research Council of Canada (Kawrakow and Rogers, 2011). EGSnrc has 2 main derived code used to spesific purpose, e.g. BEAMnrc and DOSXYZnrc. BEAMnrc code system used to design a linac based on manufacturer's detailed information (material and geometry spesification of each linac components) (Rogers *et al.*, 2011). Main output of this code is the phase space (phsp) distributions contain the particle information released from linac. The components of a linear accelerator for 6 MV photon beams was shown in Figure 4. ECUT 0.521 MeV and PCUT 0.01 MeV were chosen in this study. The initial electron energy and FWHM of source were 6.4 MeV and 0.1 mm, respectively besed on commissioning process from our previous study (Dirgayussa *et al.*, 2015). The spectra distribution from phsp file was obtained using BEAMDP (BEAM data processor) showed in figure 5.

Figure 4. Schematic diagram of Varian Trilogy Clinac iX 6 MV photon beam treatment head

Figure 5. Spectral distribution of all particle (defined at the phsp file (80 cm from target) and incident electron energy 6.4 MeV) inside the field size $10 \times 10 \text{cm}^2$

The resulting phase space scoring plane after mlc component was used as an input for the DOSXYZnrc code, which calculates the dose distributions in a phantom (Walters et al., 2011). The voxel size for PDD and lateral profile were distiguished to get the best resolution and the shortest simulation time (Yani et al., 2015). To get the minimum statistical uncertainty, the number of history

TRANSACTIONS ON SCIENCE AND TECHNOLOGY

was used 1×10^9 particles. Solid water and styrofoam cross section data was created using EGSnrc program by provide the informations of material composition (element, mass density, and fraction by weight) each it. The dose distribution data obtained from DOSXYZnrc was stored in a .3ddose file and proceeds by STATDOSE to get the PDD and lateral profile data. The .3ddose file contains number of voxel (volume element), position of voxel, dose value in each voxel and error value (Figure 6)

3	3	54					
-20.000000	-1,5000000	1,5000000	20,00000	0			
-20.000000	-1.5000000	1,5000000	20.00000	0			
0.0000000	0.40000001	0.8000001	1,000000	0 1.2000000	1,4000001	1.600000	1 1.
2.0000002	2.2000003	2,4000003	2,600000	4 2.8000004	3.0000005	3.200000	5 3.
3.6000006	3.8000007	4.0000005	5.000000	5 6.0000005	7.0000005	8.000000	0 9.
10.000000	11.000000	12.000000	13.00000	0 14.000000	15.000000	16.00000	0 17
18.000000	19.000000	20,000000	21.00000	0 22.000000	23,000000	24.00000	0 25
26.000000	27.000000	28.000000	29,00000	0 30.000000	31,000000	32.00000	0 33
34.000000	35.000000	36.000000	37.00000	38.000000	39.000000	40.00000	0
1.045021621	159793260E-017	3.91537980704384347E	-017 1.182	12798128494827E-017	3.261157209610	76125E-017 1	.921897645
5.562803182	237989835E-017	1.755000699032770048	-017 1.300	31948097125529E-017	5.0992808108	1019311E-017	1.1834075
4.807599055	531228376E-017	1,42356393937796479E	-017 5.484	67866660989511E-017	1.708137180029	66853E-017 1	.140485953
5.480036573	319004457E-017	2.60687685970899557E	-016 4.725	58249599453066E-017	1,130878140324	89895E-017	4.9057512
5.089520598	360701465E-017	1.158805166077516558	-017 5.631	48126388422613E-017	2,559950490467	/27192E-016 4	.700468655
1.193574436	641758562E-017	1,15562109880627005E	-017 5.165	43270333968503E-017	1,180370329047	17909E-017 5	.719575191
1.135406324	485976658E-017	4.97416390139510558E	-017 1.187	31197629573620E-017	1,166445165005	39625E-017 5	,192551898
2.601446988	375354154E-016	4.7713794114076943	8E-017 1.1	4410456883254029E-01	7 5.0025860590	1998039E-017	1,2013595
1.199743421	L24164074E-017	5.79100779334549077E	-017 2.596	04014755225567E-016	4.788232960392	65787E-017 1	.149466852
1.175698699	996603493E-017	5,187711088149424148	-017 1.2018	27143025100296-017	5,7858817334477	/21958-017 2.	5851014155
4.991567183	384703496E-017	1.21322287474449630E	-017 1.174	65824967118915E-017	5.174162822016	992386-017 1	.202008629
4.766959236	633508693E-017	1.15011454174614401E	-017 4.969	248337325179326-017	1.212912778429	29372E-017 1	.174295839
5.737332662	2462064026-017	2.55348789827099655£	-016 4.751	52291517062191E-017	1.149563137545	05434E-017 4	.950507445
5.118959879	586901943E-017	1.202056097855988498	-017 5.707	84046460298030E-017	2.530097802111	602998-016 4	.721619692
1.211902868	807934818E-017	1.16967837511537621E	-017 5.086	36755146311916E-017	1,198714173165	41206E-017 5	.668543598
1.147017600	007152428E-017	4.892402528156603788	-017 1.211	08648892438312E-017	1.167917526015	52918E-017 5	.055498468
2.485342257	754076918E-016	4.67177382984563736E	-017 1.147	25809981362623E-017	4,857254827116	386688E-017 1	.208302318

Figure 6. Dose distribution data obtained from DOSXYZnrc and stored in .3ddose file

Result and discussion

The lateral profile curves along the central axis provided from Monte Carlo simulation data were compared to measurements data for 6 MV photon beam, field size 5×5 and 10×10 cm² and SSD 100 cm (Figure 7).

Figure 7. Comparison of lateral profile between measurement and Monte Carlo simulation for field size 5×5 (black and blue lines) and 10×10 cm² (red and green lines). (Mea=measurement data and Sim=simulation data)

The reference data were obtained to verify the field size using solid water. This lateral profile scored at depth 10 cm and normalized with the dose maximum measured. The profile trends are similar for the measured and Monte Carlo results, but there is an offset approximately 5% between measured and computed data. The physical penumbra widths (20% - 80%) calculated by Monte Carlo agree well with those of the measurement data with differences less than 1 cm. The penumbra widths of the 10×10 cm² are larger than 5×5 cm² field. This discrepancy is attributed to the actual density of styrofoam and size of detector used in measurements. Computer run times were 4.7 hours by i5 computer with 4 cores. There is no large statistical uncertainty founded in this simulation. This figure shows the dose variation across the defined field at a 10 cm depth. In addition, the beam profile shows the beam flatness and the defined field size showing that the dose is uniform across the 5×5 and 10×10 cm² field. Thus, these results are used to validate the correct geometry for the flattening filter and collimated jaws simultaneously.

Figure 8. Comparison PDD obtained from Monte Carlo calculation for 6 MV X-ray fields of various styrofoam thickness for field size (a) 5×5 and (b) 10×10 cm². The black, red and blue lines are 1, 2 and 3 cm of styrofoam thickness obtained by Monte Carlo calculation.

It can be seen from Figure 8 that the boundaries between inhomogeneities were clearly visible. The absorbed dose is reduced dramatically in styrofoam material for both field sizes (5×5 and 10×10 cm²) and styrofoam thickness (1, 2 and 3 cm). The dose was fall-off in the boundary between solid water and styrofoam and then increased in the boundary between styrofoam and solid water. There was not shift Dmax for each styrofoam thickness. For field size 5×5 cm², the amount of dose reduction in styrofoam was 13%, 18% and 24% for styrofoam thickness 1, 2 and 3 cm, respectively. For field size 10×10 cm2, the amount of dose reduction in styrofoam was 10%, 7% and 15% for styrofoam thickness 1, 2 and 3 cm, respectively. The styrofoam density is lower than solid water density. When photon with certain energy passed low density material, most of them will be transmitted. So, the absorbed energy in this region will decrease. Some of photons will be transmitted to the next material (solid water). These photons affect the increasing of absorbed dose in solid water region. Several studies have reported underdosing at interfaces due to loss of electronic equilibrium. Chow et al. (2009) compared the PDD and lateral profile in a slab phantom contains water and lung slab. The mass density of lung slab is varied with 0.05, 0.08, 0.1, 0.3, 0.5, and 0.7. The results show that the decrease in the mass density of lung caused a decrease in photon attenuation and an increase in depth dose (Figure 9).

Figure 9. PDD of the slab phantom for a 6 MV photon beam with field size of $4 \times 4 \text{ cm}^2$. The PDD was normalized to the dose at D_{max} in a reference water phantom (Chow *et al.*, 2009)

From figure 10 shows that the curve trends are similar for the measurement and Monte Carlo results, but there is a discrepancy approximately 4% between measured and computed data for both 5×5 and 10×10 cm² and styrofoam thickness. The lateral profiles were measured at 10 cm depth. Indeed, there is a small reduction in dose attributable to decreased backscatter from the low-density region. The field size was 10 cm in diameter, which is large enough to establish lateral electron equilibrium at the central axis. Therefore, the reduction of dose could not have been due to lack of lateral equilibrium. Lateral disequilibrium of electrons can produce perturbations in dose in low-density regions in inhomogeneous phantoms. For field size 5×5 cm², the FWHM (Full Width at Half

Maximum) was 5.5 and 6 cm for Monte Carlo and measurement data, respectively. And for field size 10×10 cm², the FWHM was 11 and 11.6 cm for Monte Carlo and measurement data, respectively.

The penumbra broadening of a photon beam becomes one of mayor factor to concern with especially in inhomogeneous phantom. For field size 5×5 cm², the physical penumbra width (an area where the dose reduced significantly between 20% and 80%) was 0.9 and 1.3 cm for Monte Carlo and measurement data, respectively. And for field size 10×10 cm², the physical penumbra width was 2 and 1.5 cm for Monte Carlo and measurement data, respectively. (Figure 10).

Figure 10. Comparison lateral profile obtained from Monte Carlo calculation for 6 MV X-ray fields of various styrofoam thickness for field size (a) 5×5 and (b) 10×10 cm². (Mea=measurement data Sim=simulation data)

Lateral profile cannot directly express the effect of inhomogeneity in a phantom with field size 5×5 and 10×10 cm² both simulation and measurement results even though the thickness of styrofoam varied. But, this effect can show clearly in PDD curve. The material boundaries with different density was clearly visible especially for field size 5×5 cm² (Figure 9 and 10).

Conclusion

Monte Carlo based dose calculations for Varian Trilogy Clinac iX photon beam linear accelerator electron in inhomogeneity phantom (solid water – styrofoam – solid water) have been demonstrated to be accurate at the 4% level in comparison with measurements. The PDD can express the effect of inhomogeneity clearly in a phantom with field size 5×5 and 10×10 cm² both simulation and measurement results with the thickness of styrofoam varied.

Acknowledgements

The authors thank Varian Medical Systems for providing technical data of linear accelerator to be modelled with Monte Carlo. This study was fully supported by Riset Kerjasama Luar Negeri Dikti 2016 (077/SP2H/PL/LT/II/2016) and Hibah Disertasi Doktor Dikti 2016.

References

- Cardoso, S. C., Alves, V. G. L., da Rosa, L. A. R., Campos, L. T., Batista, D. V. S. & Facure, A. (2010). Monte Carlo Simulation of Bony Heterogeneity Effects on Dose Profile for Small Irradiation Field in Radiotherapy. *Plos One*, 5(5), e10466.
- [2] Chandola, R. M., Tiwari, S., Painuly, N. K., Choudhary, V., Azad, S. K. & Beck, M. (2011). Monte Carlo Study of Dosimetric Parameters and Dose Distribution Effect of Inhomogeneities and Source Position of GammaMed Plus Source. *Journal of Cancer Research and Therapeutics*, 7(1), 29-34.
- [3] Chow, J. C. L., Leung, M. K. K. & Dyk, J. V. (2009). Variations of Lung Density and Geometry on Inhomogeneity Correction Algorithms: A Monte Carlo Dosimetric Evaluation. *Medical Physics*, 36(8), 3619-30.
- [4] Dirgayussa, I. G. E., Yani, S., Rhani, M. F. & Haryanto, F. (2015). Commissioning process of Varian Clinac iX 6 MV photon beam. AIP Conference Proceedings, 1677, 040006.
- [5] Han, T., Mikell, J. K., Salehpour, M. & Mourtada, F. (2011). Dosimetric Comparison of Acuros XB Deterministic Radiation Transport Method with Monte Carlo and Model-based Convolution Methods in Heterogeneous Media. *Medical Physics*, 38(5), 2651-64.
- [6] Kawrakow, I. & Rogers, D. W. O. (2011). *The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport.* Ottawa: National Research Council of Canada
- [7] Lloyd, S. A. M. & Ansbacher, W. (2013). Evaluation of an Analytic Linear Boltzmann Transport Equation Solver for High-density Inhomogeneities. *Medical Physics*, 40(1), 011707-1-5.
- [8] Nedaie, H. A., Mosleh-Shirazi, M. A. & Allahverdi, M. (2013). Monte Carlo N Particle Code Dose Distribution of Clinical Electron Beams in Inhomogeneous Phantoms. *Journal of Medical Physics*, 38(1), 15-21.
- [9] Robinson, D. (2008). Inhomogeneity Correction and The Analytic Anisotropic Algorithm. *Journal of Applied Clinical Medical Physics*, **9**(2), 1-11.
- [10] Rogers, D.W.O., Walters, B. & Kawrakow, I. (2011). *BEAMnrc Users Manual*. Ottawa: National Research Council of Canada.
- [11] Sterpin, E., Tomsej, M., Smedt, B. D., Reynaert, N. & Vynckier, S. (2007). Monte Carlo Evaluation of The AAA Treatment Planning Algorithm in A Heterogeneous Multilayer Phantom and IMRT Clinical Treatments for An Elekta SL25 Linear Accelerator. *Medical Physics*, 34(5), 1665-77.
- [12] Walters, B., Kawrakow, I. and Rogers, D.W.O. (2011). *DOSXYZnrc Users Manual*. Ottawa: National Research Council of Canada.
- [13] Yani, S., Dirgayussa, I. G. E., Rhani, M. F., Haryanto, F. & Arif, I. (2015). The Effect of Voxel Size on Dose Distribution in Varian Clinac iX 6 MV Photon Beam using Monte Carlo Simulation. *AIP Conference Proceedings*, 1677, 040002.