Identification of Trichoderma Species From Wet Paddy Field Soil SamplesAzriah ASIS & Shafiquzzaman SIDDIQUEEDownload pdf.Keywords: Biocontrol agents; ITS; TEF1; Trichoderma. A b s t r a c t Trichoderma species has gained immense economic importances because of their production of industrial enzymes and antifungal antibiotics, used as biocontrol agents, used in textile industry and as plant growth promoter. Thus, the correct identification of the species is necessary for its commercial demand. Preliminary identification of the species is usually based on its morphological properties, but the result is inadequate for species level identification. Molecular approaches using a single gene to multiple genes have applied for valid species identification. The main aim of this study is to characterize the genetic variability among twenty isolates of Trichoderma, obtained from wet paddy field soil. Data analysis of the internal transcribed spacer (ITS) regions of the rDNA and a partial sequence of the translation elongation factor 1-alpha (TEF1) were constructed in a phylogenetic analysis and were positively identified as Trichoderma asperellum (85%), T. harzianum (10%) and T. reesei (5%). The result confirmed the potential of molecular data in differentiating the species-specific level among all Trichoderma isolates. References
[1]
Alvindia, D. G. & Hirooka, Y. (2011). Identification of
Clonostachy and Trichoderma
spp. from banana fruit surfaces by cultural, morphological and
molecular methods. Mycol.,
2(2): 109-115.
[2]
Cubero, O., Crespo, A., Fatehi, J. & Bridge, P. D. (1999). DNA
extraction and PCR amplification method suitable for fresh,
herbarium-stored, lichenized and other fungi.
Plant Systematics and
Evolution, 216(34),
243-249.
[3]
Cumagun, C. J. R., Hockenhull, J. & Lübeck, M. (2000).
Characterization of
Trichoderma isolates from Philippine rice fields by UP-PCR
and rDNA-ITS1 analysis: Identification of UP-PCR markers.
J. Phytopatho.,
148(2), 109-115.
[4]
Druzhinina, I. S, Kopchinskiy, A.G., Komoń, M., Bissett, J.,
Szakacs, G. & Kubicek, C. P. (2005). An oligonucleotide barcode
for species identification in
Trichoderma and
Hypocrea. Fungal Genet Biol.,
42(10), 813-828.
[5]
Druzhinina, I. S., Komoń- Zelazowska, M., Kredics, L., Hatvani,
L., Antal, Z., Belayneh, T. & Kubicek, C. P. (2008). Alternative
reproductive strategies of
Hypocrea orientalis and genetically close but clonal
Trichoderma
longibrachiatum, both capable of causing invasive mycoses of
humans. Microbiology, 154(Pt 11),
3447-3459.
[6]
Gams, W. & Bissette, J. (1998). Morphology and identification of
Trichoderma. In:
Kubicek, C. P. & Harman G. E. (Eds.).
Trichoderma and
Gliocladium, Basic
Biology (Vol. 1). London: Taylor & Francis.
[7]
Gherbawy, Y., Druzhinina, I. S., Shaban, G. M., Wuczkowsky, M.,
Yaser, M., El-Naghy, M. A., Prillinger, H. & Kubicek, C. P.
(2004). Trichoderma populations from alkaline agricultural soil in the Nile
valley, Egypt, consists of only two species.
Mycol. Prog.,
3, 211-218.
[8]
Harman, G. E. (2006). Overview of mechanisms and uses of
Trichoderma spp.
Phytopathology, 96(2),
190-194.
[9]
Hatvani, L., Vágvölgyi, C., Kredics, L. & Druzhinina, I. S.
(2014). DNA barcode for species identification in
Trichoderma.
In: Gupta, V. K.,
Schmoll, M., Herrera-Estrella A., Upadhyay, R. S., Druzhinina,
I. S. & Tuohy, M.G.
Biotechnology and biology of Trichoderma. Elsevier.
[10]
Joshi, D., & Misra, S. C. (2013). Characterization of
Trichoderma isolates from sugarcane agro-ecosystem and their
efficacy against a
Colletotrichum falcatum causing red rot of sugarcane.
Sugar Tech.,
15(2), 192-196.
[11]
Kindermann, J., El-Ayouti, Y., Samuels, G. J. & Kubicek, C. P.
(1998). Phylogeny of the genus
Trichoderma based on
sequence analysis of the internal transcribed spacer region 1 of
the rDNA cluster. Fungal
Genetics and Biology,
24(3), 298-309.
[12]
Kopchinskiy, M., Komoń- Zelazowska, M., Kubicek, C. P. &
Druzhinina, I. S. (2005). TrichoBLAST: a Multiloci database for
Trichoderma and
Hypocrea
identification.
Mycological Research,
109(6), 657-660.
[13]
Kredics, L., Láday, M., Körmöczi, P., Maczinger, L., Rákhley,
G., Vágvölgyi, Cs and Szekeres, A. (2011). Trichoderma
communities of the winter wheat rhizosphere.
Agr. Vidẻkfejl. Szeml.,
6(Suppl), 413-418.
[14]
Kubicek, C., Bissette, J., Druzhinina, I. S., Kullnig-Gradinger,
C. & Szakacs, G. (2003). Genetic and metabolic diversity of
Trichoderma: a case
study on South East Asian isolates.
Fungal Genet. & Biol.,
38(3), 310-319.
[15]
Kullnig-Gradinger, C. M., Szakacs, G. & Kubicek, C. P. (2002).
Phylogeny and evolution of the genus
Trichoderma; a
multigene approach. Mycol.
Res., 106(7),
757-767.
[16]
Migheli, Q., Balmas, V., Komoń-Zelazowska, M., Scherm, B.,
Fiori, S., Kopchinskiy, A. G., Kubicek, A. P. & Druzhinina, I.
S. (2009). Soils of Mediterranean hot spot of biodiversity and
endemism (Sardinina, Tyrrhenian Islands) are inhabited by
pan-European, invasive species of
Hypocrea/Trichoderma.
Environmental Microbiology,
11(1), 35-46.
[17]
Mpika, J., Kẻbẻ, I. B., Issali, A. E., N’Guessan, F. K.,
Druzhinina, I. S., Komon-Zelazowska, M., Kubicek, C. P. & Akẻ,
S. (2009). Antagonist potential of
Trichoderma indigenous
isolates for biological control of Phytophthora palmivora the
causative agent of black pod disease on cocoa (Theobroma
cacao L.) in Côte d’Ivoire.
Afr. J. Biotechnol.,
8(20), 5280-5293.
[18]
Naeimi, S., Khidaparast, S. A., Javan-Nikkhah, M., Vágvölgyi, C.
& Kredics, L. (2011). Species pattern and phylogenetic
relationships of Trichoderma strains in rice fields of Southern Caspian Sea, Iran.
Cereal Res. Commun.
39(4): 560-568.
[19]
Shentu, X., Zhan, X., Ma, Z., Yu, X. & Zhang, C. (2014).
Antifungal activity of metabolites of the endophytic fungus
Trichoderma brevicompactum
from garlic. Brazilian
Journal of Microbiol.,
45(1), 248-254.
[20]
Sun, R. -Y, Liu, Z. -C., Fu, K., Fan, L. & Chen, J. (2012).
Trichoderma biodiversity in China.
J. Appl. Genet., 53(3),
343-354.
[21]
Tsurumi, Y., Inaba, S., Kamijo, S., Widyastuti, Y., Hop, D.,
Balijinova, T., Sukarno., N., Nakagiri, A., Susuki, K. & Ando,
K. (2011). Distribution of
Trichoderma species in four countries of Asia.
9th
International Mycological Congress. 1 - 6 August, 2010.
Edinburgh, Scotland.
[22]
Watanabe, S., Kumakura, K., Kato, H., Iyozumi, H., Togawa, M. &
Nagayama, K. (2005). Identification of
Trichoderma SKT-1, a
biological control agents against seedborne pathogens of rice.
J. Gen. Plant Pathol.,
71(5), 351-356.
[23]
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990).
Amplification and direct sequencing of fungal ribosomal RNA
genes for phylogenetics.
In: Innis, M.A., Gelfand, D.H., Sninsky, J. J. & White, T.
J. (eds.). PCR protocols:
A guide to Methods and Applications. San Diego: Academic
Press.
[24]
Woo, S. L. & Lorito, M. (2007). Exploiting the interactions
between fungal antagonists, pathogens and the plant for
biocontrol. In: Vurro, M. & Gressel, J. (eds.).
Novel Biotechnologies for Biocontrol Agent Enhancement and Management.
Netherlands: Springer.
[25]
Wuczkowski, M., Druzhinina, I. S., Gherbawy, Y., Klug, B.,
Prillinger, H. & Kubicek, C. P. (2003). Species pattern and
genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest.
Microbiol. Res.,
158(2), 125-133.
[26]
Xia, X., Lie, T. K., Qian, X., Zheng, Z., Huang, Y. & Shen, Y.
(2011). Species diversity, distribution and genetic structure of
endophytic and epiphytic
Trichoderma associated with banana roots.
Microb. Ecol.,
61(3), 619-625.
[27]
Yang, H. T., Ryder, M. H. & Tang, W. H. (2005). Characterisation
and identification of
Trichoderma isolates from a south Australian soil
suppressive to Rhizoctonia solani on wheat.
Shandong Science, 18(3):
36-49.
[28]
Yu, Z. F., Qiao, M., Zhang, Y. & Zhang, K. Q. (2007). Two new
species of Trichoderma
from Yunnan, China.
Antonie van Leeuwenhoek,
92(1), 101-108. |