Identification of Trichoderma Species From Wet Paddy Field Soil Samples

Azriah ASIS & Shafiquzzaman SIDDIQUEE

Download pdf.
Keywords: Biocontrol agents; ITS; TEF1; Trichoderma.

A b s t r a c t

Trichoderma species has gained immense economic importances because of their production of industrial enzymes and antifungal antibiotics, used as biocontrol agents, used in textile industry and as plant growth promoter. Thus, the correct identification of the species is necessary for its commercial demand. Preliminary identification of the species is usually based on its morphological properties, but the result is inadequate for species level identification. Molecular approaches using a single gene to multiple genes have applied for valid species identification. The main aim of this study is to characterize the genetic variability among twenty isolates of Trichoderma, obtained from wet paddy field soil. Data analysis of the internal transcribed spacer (ITS) regions of the rDNA and a partial sequence of the translation elongation factor 1-alpha (TEF1) were constructed in a phylogenetic analysis and were positively identified as Trichoderma asperellum (85%), T. harzianum (10%) and T. reesei (5%). The result confirmed the potential of molecular data in differentiating the species-specific level among all Trichoderma isolates.

References

[1]       Alvindia, D. G. & Hirooka, Y. (2011). Identification of Clonostachy and Trichoderma spp. from banana fruit surfaces by cultural, morphological and molecular methods. Mycol., 2(2): 109-115.

[2]       Cubero, O., Crespo, A., Fatehi, J. & Bridge, P. D. (1999). DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized and other fungi. Plant Systematics and Evolution, 216(34), 243-249.

[3]       Cumagun, C. J. R., Hockenhull, J. & Lübeck, M. (2000). Characterization of Trichoderma isolates from Philippine rice fields by UP-PCR and rDNA-ITS1 analysis: Identification of UP-PCR markers. J. Phytopatho., 148(2), 109-115.

[4]       Druzhinina, I. S, Kopchinskiy, A.G., Komoń, M., Bissett, J., Szakacs, G. & Kubicek, C. P. (2005). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol., 42(10), 813-828.

[5]       Druzhinina, I. S., Komoń- Zelazowska, M., Kredics, L., Hatvani, L., Antal, Z., Belayneh, T. & Kubicek, C. P. (2008). Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable of causing invasive mycoses of humans. Microbiology, 154(Pt 11), 3447-3459.

[6]       Gams, W. & Bissette, J. (1998). Morphology and identification of Trichoderma. In: Kubicek, C. P. & Harman G. E. (Eds.). Trichoderma and Gliocladium, Basic Biology (Vol. 1). London: Taylor & Francis.

[7]       Gherbawy, Y., Druzhinina, I. S., Shaban, G. M., Wuczkowsky, M., Yaser, M., El-Naghy, M. A., Prillinger, H. & Kubicek, C. P. (2004). Trichoderma populations from alkaline agricultural soil in the Nile valley, Egypt, consists of only two species. Mycol. Prog., 3, 211-218.

[8]       Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190-194.

[9]       Hatvani, L., Vágvölgyi, C., Kredics, L. & Druzhinina, I. S. (2014). DNA barcode for species identification in Trichoderma. In: Gupta, V. K., Schmoll, M., Herrera-Estrella A., Upadhyay, R. S., Druzhinina, I. S. & Tuohy, M.G. Biotechnology and biology of Trichoderma. Elsevier.

[10]   Joshi, D., & Misra, S. C. (2013). Characterization of Trichoderma isolates from sugarcane agro-ecosystem and their efficacy against a Colletotrichum falcatum causing red rot of sugarcane. Sugar Tech., 15(2), 192-196.

[11]   Kindermann, J., El-Ayouti, Y., Samuels, G. J. & Kubicek, C. P. (1998). Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genetics and Biology, 24(3), 298-309.

[12]   Kopchinskiy, M., Komoń- Zelazowska, M., Kubicek, C. P. & Druzhinina, I. S. (2005). TrichoBLAST: a Multiloci database for Trichoderma and Hypocrea identification. Mycological Research, 109(6), 657-660.

[13]   Kredics, L., Láday, M., Körmöczi, P., Maczinger, L., Rákhley, G., Vágvölgyi, Cs and Szekeres, A. (2011). Trichoderma communities of the winter wheat rhizosphere. Agr. Vidẻkfejl. Szeml., 6(Suppl), 413-418.

[14]   Kubicek, C., Bissette, J., Druzhinina, I. S., Kullnig-Gradinger, C. & Szakacs, G. (2003). Genetic and metabolic diversity of Trichoderma: a case study on South East Asian isolates. Fungal Genet. & Biol., 38(3), 310-319.

[15]   Kullnig-Gradinger, C. M., Szakacs, G. & Kubicek, C. P. (2002). Phylogeny and evolution of the genus Trichoderma; a multigene approach. Mycol. Res., 106(7), 757-767.

[16]   Migheli, Q., Balmas, V., Komoń-Zelazowska, M., Scherm, B., Fiori, S., Kopchinskiy, A. G., Kubicek, A. P. & Druzhinina, I. S. (2009). Soils of Mediterranean hot spot of biodiversity and endemism (Sardinina, Tyrrhenian Islands) are inhabited by pan-European, invasive species of Hypocrea/Trichoderma. Environmental Microbiology, 11(1), 35-46.

[17]   Mpika, J., Kẻbẻ, I. B., Issali, A. E., N’Guessan, F. K., Druzhinina, I. S., Komon-Zelazowska, M., Kubicek, C. P. & Akẻ, S. (2009). Antagonist potential of Trichoderma indigenous isolates for biological control of Phytophthora palmivora the causative agent of black pod disease on cocoa (Theobroma cacao L.) in Côte d’Ivoire. Afr. J. Biotechnol., 8(20), 5280-5293.

[18]   Naeimi, S., Khidaparast, S. A., Javan-Nikkhah, M., Vágvölgyi, C. & Kredics, L. (2011). Species pattern and phylogenetic relationships of Trichoderma strains in rice fields of Southern Caspian Sea, Iran. Cereal Res. Commun. 39(4): 560-568. 

[19]   Shentu, X., Zhan, X., Ma, Z., Yu, X. & Zhang, C. (2014). Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Brazilian Journal of Microbiol., 45(1), 248-254.

[20]   Sun, R. -Y, Liu, Z. -C., Fu, K., Fan, L. & Chen, J. (2012). Trichoderma biodiversity in China. J. Appl. Genet., 53(3), 343-354.

[21]   Tsurumi, Y., Inaba, S., Kamijo, S., Widyastuti, Y., Hop, D., Balijinova, T., Sukarno., N., Nakagiri, A., Susuki, K. & Ando, K. (2011). Distribution of Trichoderma species in four countries of Asia. 9th International Mycological Congress. 1 - 6 August, 2010. Edinburgh, Scotland.

[22]   Watanabe, S., Kumakura, K., Kato, H., Iyozumi, H., Togawa, M. & Nagayama, K. (2005). Identification of Trichoderma SKT-1, a biological control agents against seedborne pathogens of rice. J. Gen. Plant Pathol., 71(5), 351-356.

[23]   White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J. J. & White, T. J. (eds.). PCR protocols: A guide to Methods and Applications. San Diego: Academic Press.

[24]   Woo, S. L. & Lorito, M. (2007). Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro, M. & Gressel, J. (eds.). Novel Biotechnologies for Biocontrol Agent Enhancement and Management. Netherlands: Springer.

[25]   Wuczkowski, M., Druzhinina, I. S., Gherbawy, Y., Klug, B., Prillinger, H. & Kubicek, C. P. (2003). Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol. Res., 158(2), 125-133.

[26]   Xia, X., Lie, T. K., Qian, X., Zheng, Z., Huang, Y. & Shen, Y. (2011). Species diversity, distribution and genetic structure of endophytic and epiphytic Trichoderma associated with banana roots. Microb. Ecol., 61(3), 619-625.

[27]   Yang, H. T., Ryder, M. H. & Tang, W. H. (2005). Characterisation and identification of Trichoderma isolates from a south Australian soil suppressive to Rhizoctonia solani on wheat. Shandong Science, 18(3): 36-49.

[28]   Yu, Z. F., Qiao, M., Zhang, Y. & Zhang, K. Q. (2007). Two new species of Trichoderma from Yunnan, China. Antonie van Leeuwenhoek, 92(1), 101-108.