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ABSTRACT The current era emphasizes the application of intelligent algorithms for automating industrial processes. 
Among these, fault detection and prediction take precedence. This research introduces fault detection method that 
combine the genetic algorithm with back-propagation neural networks (GA-BPNN). The integration of these two methods, 
GA-BPNN, enhances their effectiveness. GA-BPNN effectively addresses the challenges of poor convergence in traditional 
genetic algorithms (GAs) and the difficulty of accurately defining parameters in back-propagation neural networks 
(BPNNs). In this approach, BPNN serves as the foundational framework, while GA dynamically optimizes various 
parameters within the BPNN. The proposed method GA-BPNN exhibits excellent parameter self-regulation ability and can 
adapt to various training conditions. This optimization process enhances precision and speed, making GA-BPNN a 
powerful and efficient solution. The Tennessee Eastman (TE) chemical process is employed as the simulated domain to 
validate the efficacy and superiority of the GA-BPNN approach in process control. The simulation results indicate that the 
GA-BPNN method outperforms the traditional BPNN. Additionally, the proposed method demonstrates excellent self-
regulation ability, automatically optimizing parameters, and ensuring outstanding adaptability and learning ability in various 
situations. 
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INTRODUCTION 

In chemical industrial processes, a fault is defined as any abnormal deviation from the normal 

operating conditions. Faults are a concern because even small faults in a complex industrial system 

can initiate a series of events that result in loss of efficiency and reliability. As a result, there is a need 

for techniques to improve the process’s reliability and up-time. Effective fault detection and 

identification is important for monitoring components for making appropriate maintenance 

decisions. First, fault detection determines whether a fault has occurred in the system also 

characterized as anomaly detection in other applications. Then fault identification determines which 

observation variables are most relevant to diagnosing the fault detected, thereby helping operators 

to focus on specific subsystems. Systems that can accurately and promptly detect and identify faults 

can more effectively inform operators and engineers and significantly reduce the effort and time to 

recover the system.  

 

The Tennessee Eastman (TE) process is a chemical simulative model based on the actual chemical 

production process (Downs & Vogel, 1993). The data generated by the TE process exhibits time-

varying, strong coupling, and nonlinear characteristics. While manual detection and judgment at the 

current time have reached a relatively mature state, the application of advanced theories and 

equipment has improved the controllability of the TE process. However, several challenges persist, 
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including the extensive human effort required for detection and the potential for delays in 

identifying failures when detection instruments malfunction. Consequently, there is a growing need 

for a dependable automatic fault detection and prediction system.  

 

A fault detection system based on Artificial Neural Networks (ANN) has demonstrated 

successful applications in numerous research studies (Adeli & Mazinan, 2020; Heo & Lee, 2019; 

Lomov et al., 2021; Xie and Bai, 2015). An analysis of the recent performance of Artificial Neural 

Networks (ANN), Convolutional Neural Networks (CNN), Genetic Algorithms (GA), and Fuzzy 

Logic in the field of fault recognition reveals that these algorithms can be individually employed 

effectively only when there are few fault modes, a limited number of parameters, and a relatively 

simple system structure (Garud et al., 2021). Each of these algorithms has its own strengths and 

limitations. The CNN has demonstrated effective application in the fault identification of wind 

turbines (Xiang et al., 2021). This method can learn from recorded fault situations and achieve 

anomaly detection through actual values and reserved residuals, providing high reliability. 

However, due to substantial environmental differences in wind turbine locations, this method lacks 

broad adaptability. CNN's parameters need adjustment, indicating a lack of inherent adaptability. In 

the collaborative design problem of asynchronous fault detection filters, genetic algorithms (GA) can 

achieve fault detection and identification (Zhang et al., 2023). Nevertheless, this scenario involves 

fewer parameters, a relatively simple system structure, and lower computational complexity, 

making GA suitable. However, when dealing with complex industrial systems, GA may become 

slow in fault identification and prediction, or even infeasible. Therefore, combining these algorithms 

can result in better overall results. GA-BPNN has successfully realized real-time fault detection in 

the field of liquid rocket engines (Yu & Wang, 2021). This method exhibits good real-time and 

accuracy attributes, validated in a rocket launch, demonstrating sensitivity and robust 

characteristics. 

 

In this study, the integration of GA with BPNN has been selected for the TE process. Combining 

Genetic Algorithm (GA) with Backpropagation Neural Network (BPNN) to create GA-BPNN offers 

several advantages for more efficient problem-solving. Traditional GA exhibits adaptability but 

often suffers from poor convergence, which can lead to issues in complex environments, including 

convergence difficulties and local optimization errors. On the other hand, traditional BPNN, while 

adaptable, is sensitive to parameter errors due to its numerous parameters. GA-BPNN capitalizes on 

the strengths of both methods, with BPNN as its core. It utilizes genetic algorithms to optimize 

BPNN parameters such as learning rate, momentum, and hidden layers. This approach results in a 

more precise and targeted optimization process, effectively addressing the convergence and 

parameter definition challenges typically encountered in traditional GA and BPNN. 

 

 

OVERVIEW TENNESSEE EASTMAN CHEMICAL PROCESS  

The TE process platform serves as an open and challenging chemical model test bench, 

comprising multiple operating units including a continuous stirred reactor, a condenser, a gas-liquid 

separation tower, a stripper, a reboiler, and a centrifugal compressor. The process schematic is 

depicted in Figure 1. Three gas reactants, namely A, D, and E, directly enter the reactor. Feed C, 

along with a certain amount of feed A, is introduced into the process via the condenser. 

 

The TE process encompasses a total of 11 action variables and 41 process variables. For the 

selection of process monitoring variables, several commonly used parameters closely linked to the 

process's operation are chosen. Among these, 11 operating variables—designated as XMV (1) 

through XMV (11)—serve as inputs. These variables include the flow rates of material D (flow rate 

http://tost.unise.org/
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2), material E (flow rate 3), material A (flow rate 1), and materials A and C (flow 4), as well as the 

compressor circulation valve, air discharge valve, separator liquid flow, desorption tower steam 

valve, reactor cold water flow, and condenser cold water flow. Components F, G, and H are utilized 

as output variables. 

 
Figure 1. Tennessee Eastman (TE) process (Zhang et al., 2020) 

 

 

METHODOLOGY 

 

Datasets  

The Tennessee Eastman (TE) process simulates real chemical processes and serves as a 

benchmark for testing fault diagnosis and process control. The TE simulation platform provides a 

total of 22 sets of data, each consisting of both a training set and a test set. Each set of TE datasets is 

derived from actual data collected every 3 minutes. The training set comprises a total of 500 data 

points, collected over 25 hours, while the test set consists of 960 data points, collected over 48 hours. 

Within the 01-21 fault dataset, the first 160 data points represent normal conditions, with faults 

occurring from the 161st data point, corresponding to the 8th hour. Each dataset includes 52 

observational variables, comprising 11 control variable data, 22 reaction process data, and 19 

product component measurement data. Details on the datasets are provided on the IEEE dataport 

(Cheng, 2019) 

 

Genetic Algorithm with Back-propagation Neural Networks (GA-BPNN) Method 

The proposed method, GA-BPNN, represents a more efficient intelligent algorithm that combines 

Genetic Algorithms (GA) with Backpropagation Neural Networks (BPNN). In the GA-BPNN 

algorithm, the learning rate  is expressed as the momentum  during the gradient descent 

process, as shown in the following equation. 

 

 
(1) 

  

 (2) 
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where  is the nth momentum term,  is the momentum term of the nth order,  

represents the learning rate, and  represents the additional momentum factor. 

In the GA-BP neural network, the learning rate  determines the step size. A larger  results in 

faster optimization but can lead to issues such as repeated oscillations and failure to converge. 

Conversely, a smaller  results in a smaller step size, slower optimization, and reduced risk of 

oscillations and convergence problems. However, it may increase the likelihood of getting stuck in 

local optima or encountering gradient disappearance.  represents the change after the nth 

update,  represents the change after the n-1 update, and  denotes the additional change 

factor, also known as the momentum factor. Consequently, in the BPNN, the optimal change 

amplitude during the learning process is determined by both the learning rate  and the additional 

momentum factor . The presence of  allows for the control of the change within a certain range, 

preventing adverse occurrences like gradient disappearance or gradient explosion. The minimum 

gradient change  is defined as the difference between two gradient changes, and this 

parameter ensures continuous optimization, preventing it from halting at a local optimal solution. 

 

The number of optimization epochs is another parameter worthy of optimization. Too many 

epochs can result in excessively long optimization times for the GA-BPNN, while too few may cause 

the optimal solution to be missed. Similarly, the choice of the number of populations in GA also has 

a significant impact on the optimization outcome, with too few or too many populations affecting 

the optimization effectiveness. The regression parameter R2 is one of the criteria for evaluating GA-

BPNN optimization. During the training of GA-BPNN, R2 reflects the difference between the 

estimated data and the real data, as shown in Equation (3). 

 

 
(3) 

  

where  is actual value,  is average of the actual values and  is predicted value. 

 

In this research, the GA-BPNN optimization algorithm selects genes such as the learning rate , 

the momentum factor , the number of optimizations , and the minimum gradient change . 

The objective function is defined as the regression coefficient R2. The GA-BPNN analysis matrix is 

then established as given in Equation (4). 

 

 

(4) 

 

In GA-BPNN, R2 is utilized as the objective function for the genetic algorithm. Because that the 

range of R2 is [0-1], continuous optimization of the gene matrix is pursued based on the numerical 

values of R2. Throughout the optimization process, the genes from each row of the gene matrix are 

initially individually introduced into the neural network for training. The neural network is then 

trained, and the R2 of the output parameters is calculated. Based on the magnitudes of R2, the genes 

within the gene matrix are rearranged. Subsequently, using the genetic algorithm, the gene matrix 

undergoes evolution to obtain the second-generation gene matrix. The genes of this new generation 

are reintroduced into the neural network to further seek the optimal R2 and simultaneously identify 

the optimal parameter settings for the neural network. 

http://tost.unise.org/
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Notably, genes do not serve as inputs to the neural network. Instead, the inputs to the neural 

network comprise various operational parameters of industrial systems' equipment. The output 

consists of system parameters that necessitate fault detection. The genetic algorithm employs the 

training results of the neural network as its objective function. Consequently, these two algorithms 

operate concurrently. The configuration of the neural network's layers, encompassing the number of 

layers, is also encoded in the gene matrix. Essentially, determining the optimal number of layers in 

the neural network is one of the primary optimization objectives. The GA-BPNN is constructed by 

utilizing the first four columns of this matrix as genes, with the fifth column serving as the objective 

function. Subsequently, the GA-BPNN is employed to efficiently simulate and train the TE model. A 

comparison is then made between the results obtained from GA-BPNN training under TE fault 

conditions and the results under normal TE conditions. If a significant disparity is observed, fault 

determination is successfully accomplished. The GA-BPNN design process as shown in Figure 2. 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2. The block diagram of GA-BPNN design process 
 

 

RESULT AND DISCUSSION 

In the first stage, the simulation has been conducted to compare the traditional BPNN method 

with the proposed GA-BPNN method. The TE dataset of the 13th data group from the XMV (9) 

extractor, which measures water flow rate pressure, is used as a test case for both methods. As 

shown in Figure 3(a), the traditional BPNN can capture the general trend of XMV (9). However, 

although it broadly reflects the trend, it cannot provide accurate estimates, resulting in a significant 

margin of error. In contrast, GA-BPNN as shown in Figure 2(b) not only accurately captures the 

overall trend but also exhibits minimal error, showcasing excellent regression performance with an 

R2 value close to 1. Therefore, GA-BPNN is a reliable method for fault detection, producing highly 

dependable results.

  
(a) (b) 

Figure 3. The comparison simulation results between (a) traditional BPNN and (b) GA-BPNN methods. 

http://tost.unise.org/
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In the next stage, simulations were conducted to test the proposed method using a single fault 

data or abnormal condition. GA-BPNN inherits the excellent adaptability of BPNN and includes 

automatic parameter correction, providing the algorithm with exceptional learning capabilities that 

can adapt to various environments. For this specific case, we used the data material C feed pressure 

XMV (5) for testing. Disrupting the feed volume of material C (Flow 4) has an impact on the internal 

pressure of the Stripper and also disrupts the loop through the Flow 5 pair.  In the initial stage of our 

experiments, we set the learning rate  to 0.01, the momentum factor  to 0.95, performed 1000 

optimizations ( ), and considered a minimum gradient change amount of 1×10-6 ( ). We 

began with an initial gene chain, where the first 99 gene strands were randomly created within a ± 

50% range. These 100 gene strands were assembled into a matrix and trained and optimized using 

GA-BPNN. After two generations of optimization and learning, GA-BPNN achieved an impressive 

regression parameter R2 of 0.9997 as shown in Figure 4. Subsequently, different settings for the initial 

gene were explored several times. However, the excellent self-correction ability of GA-BPNN, even 

with different initial gene chains, the method eventually converged to nearly the same optimal gene, 

resulting in a consistently excellent regression effect.  means the initial gene chain for n, while 

 represents the final gene chain for n, as shown in Table 1. 

 
Figure 4. Learning effects of GA-BPNN on testing fault data. 

Table 1. Final R2 in different initial gene strands 

Gene     R2 

 0.01 0.95 1000 1×10-6 0.5426 

 0.1 0.95 500 1×10-5 0.3651 

 0.04 1.0 500 1×10-5 0.3481 

 0.01 1.2 750 1×10-4 0.4897 

 0.1 0.09 500 1×10-4 0.5423 

 0.9 0.09 500 1×10-3 0.3304 

 0.04 6.25 122 0 0.9998 

 0.04 6.20 235 0 0.9997 

 0.04 6.28 264 0 0.9998 

 0.04 6.31 358 0 0.9999 

 0.04 6.24 475 0 0.9994 

 0.04 6.19 254 0 0.9997 

 

 

CONCLUSION 

In conclusion, traditional BPNN lack the ability to optimize their own parameters, leading to 

inappropriate parameter selection and hindering their learning capabilities. In contrast, our 

http://tost.unise.org/
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proposed method, GA-BPNN, demonstrates excellent parameter self-regulation abilities and can 

adapt effectively to various training conditions. This positions GA-BPNN as a superior alternative to 

traditional BP neural networks. Furthermore, GA-BPNN exhibits a highly reliable fault identification 

capability and can be applied to complex chemical processes, as evidenced by simulation results 

obtained from the Tennessee Eastman process data. This method boasts strong adaptability and 

reliability, enabling it to achieve timely and accurate fault detection. Based on the successful 

simulation results derived from the Tennessee Eastman process, our proposed method holds 

significant potential for application in other intricate engineering processes, particularly within the 

oil and gas industry and reactor power plants, where the implementation of a robust fault detection 

and identification system is essential for safety concerns. 
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